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Time-dependent fluctuations in a system of coagulating particles are studied, 
using the master equation for the probability distributions P(m, t) for the 
occupation numbers m = {m~} (k = 1, 2,...) of the k-cluster states. Van Kam- 
pen's D-expansion is used to determine the deterministic (order s ~ and fluc- 
tuating part (order s -1/2) of the solution. We calculate the time-dependent 
behavior of the fluctuations in the cluster size distribution. The model under 
consideration is of special interest since it exhibits a phase transition (gelation). 
For monodisperse initial states we give explicit expressions for the probability 
distribution of the fluctuations and for the equal-time and two-time correlation 
functions also near the phase transition. For general initial conditions we study 
the fluctuations (1) for large cluster sizes, (2) in the scaling limit (near the 
critical point), and (3) for large times. Our results show that the deterministic 
approach to coagulation processes (Smoluchowski theory) is invalid very close 
to the gelpoint tc and at large times ( t> tM), where the distance from the 
gelpoint and the time t M depend upon the size of the system. 

KEY WORDS: Van Kampen's Q-expansion; fluctuations in aggregation 
kinetics; fluctuations near a gelation transition; Smoluchowski's coagulation 
equation; master equation. 

1. I N T R O D U C T I O N  

K i n e t i c  t heo ry  a ims  at  desc r ib ing  the  t i m e - d e p e n d e n t  b e h a v i o r  of averages  
a n d  of f luc tua t ions  a r o u n d  such averages.  The re  are m a n y  different 

m e t h o d s  for d i scuss ing  f luc tua t ions  in e q u i l i b r i u m  a n d  n o n e q u i l i b r i u m  
systems at  equa l  t imes a n d  at different  t imes,  u s ing  e i ther  m e t h o d s  of  

s ta t is t ical  mechanics ,  l inea r  or  n o n l i n e a r  k ine t ic  equa t ions ,  or  the m a s t e r  
equa t ion .  A genera l  reference is Ref. 1. M o r e  references c an  be found  in  
Ref. 2. 
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The structure of the kinetic equations governing the time dependence 
of these covariances and correlation functions is essentially the same in all 
methods. The kinetic equation is described by a time-dependent linear 
kinetic evolution operator, obtained by linearizing the macroscopic 
evolution equations around the time-dependent average of the fluctuating 
quantity. 

In this paper a general method for describing fluctuations in non- 
equilibrium systems is applied to a nonlinear kinetic equation describing 
coagulation processes. It is of particular interest because the coagulation 
model to be considered undergoes a phase transition (gelation) and the 
behavior of the fluctuations in the vicinity of this phase transition can be 
analyzed in all detail. 

Two approaches exist to the theoretical treatment of coagulation 
processes based on mean field ideas, where particles react independent of 
their mutual distance. On one hand, the deterministic Smoluchoski 
theory ~3'4) provides abundant information about the time evolution of the 
cluster size distribution for large classes of models, but the fluctuations in 
the concentrations are neglected. On the other hand, in the stochastic 
(master equation) approach (5 7~ the fluctuations are taken into account, 
but the method yields only a few exact solutions for special models and 
special (monodisperse) initial conditions. 

We assume that the system is large, and we expand the master 
equation in powers of the inverse system size. This method is known as the 
f2-expansion. ~l) In this expansion we retain only the first few terms. Thus, 
we obtain an approximate description of the fluctuations, valid for large 
systems, that is more tractable than the original master equation. We apply 
the method to one particular model that "is of special interest, since it 
describes the occurrence of a gelation transition. Many properties of the 
fluctuations, including their behavior near the gelpoint, can be calculated 
exactly. 

We discuss the deterministic (Smoluchowski) theory first, and then the 
master equation approach. In the Smoluchowski theory of coagulation it is 
assumed that fluctuations in the concentrations are negligibly small. This 
assumption can only be correct if the volume and the number of particles 
are infinitely large. In this case it suffices to construct a set of macroscopic 
rate equations for the concentrations ck(t) of clusters of size k (k = 1, 2,...). 
The result is known as Smoluchowski's coagulation equation(8): 

?k(t)=�89 ~ K~ei(t) cj(t)--ek(t) ~ Kkjcj(t ) ( k = l ,  2,...) (l.I) 
i + j = k  j - -1  

Equation (1.1) describes the possible irreversible coagulation reactions 
between clusters of finite size (sol particles). If, apart from the clusters of 
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finite size, there occurs also an infinite cluster, or gel, then Eq. (1.1) has to 
be supplemented with a term describing reactions between k-reefs and the 
gel. 

A different, stochastic approach is needed if the volume V and M, the 
number of basic units, are finite, and the fluctuations are no longer 
negligible. In this case a state of the system is characterized by the numbers 
of k-mers m =  {mk}, and one considers the probability P(m, t) that the 
system is in the state m at time t. The time evolution of P(rn, t) is then 
determined by the following master equation(3'6'7): 

P ( m , t ) = ( 2 V )  -~ ~ K~A~[ms(mj -6o )  P (m , t ) ]  (1.2) 
i , j%M 

where Aej is a difference operator and 6~ is a Kronecker delta. The action of 
A o. is defined for an arbitrary function f ( m )  as 

Agf(m) = f ( { m e  + 6~ + 6je - 6 ,+z,}  ) - f ( m )  (1.3) 

The initial condition for Eq. (1.2) is determined by the initial state m(0)-= 
rob, i.e., P(m, 0) = 1 if m = mo and P(m, 0) = 0 otherwise. 

The stochastic equations (1.2) and (1.3) have the following inter- 
pretation. We distinguish a gain and a loss term, corresponding, respec- 
tively, to the first and second terms in the right-hand side of (1.3). The gain 
term shows that the state m may be reached from any state with an i-mer 
and a j-met more and one ( i+ j ) -mer  less. The transition rates are 
V-1Ko.(mi+ 1)(mj+ 1) if i C j  and �89 2)(m i + 1) if i= j .  The fac- 
tor V -1 expresses the fact that encounters between clusters are less frequent 
in larger systems. A similar argument shows that the loss term in (1.2) 
represents all possible ways for the system to leave the state m. Everywhere 
hereafter we set the density equal to unity, i.e., we choose M = V. This can 
always be achieved by an appropriate definition of the unit of volume. 

The relation between the stochastic model (1.2) with V = M  and the 
deterministic equations (1.1) is that the average number of k-mers per unit 
volume ( m k ( t ) ) / M  reduces to Ck(t ) in the thermodynamic limit ( M ~  oo). 
Possible complications as a result of gel formation will be discussed below. 

An important property of Eq. (1.2), and also of (1.1), is the conser- 
vation of  mass, i.e., of the total number of units in the system. In the master 
equation approach this conservation law is obvious, since the number of 
possible states m is finite, and the mass is conserved in each transition 
between two states. As a consequence we have 

M 

kmk = M (1.4) 
k = l  
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Next consider Eq. (1.1). The situation here is more complicated. The 
reason is that Smoluchowski's equation, for some choices of the rate 
constants Kij, predicts a phase transition at a finite time tc>0. (9-11) The 
conservation law takes a different form before and past the gelpoint tc. In 
the pre-gel stage (t < to), all mass is contained in clusters of finite size, i.e., 

kck(t)=const=l (t< tc) (1.5) 
k = l  

In the post-gel stage ( t >  t~) part of the mass is contained in an infinite 
cluster (gel). Accordingly, the conservation law (1.5) for the sol mass is 
replaced by 

kck(t)+g(t)=l (t> to) (1.6) 
k = l  

where g(t) represents the mass of the gel. The constant in the right-hand 
side of (1.5) and (1.6) is equal to unity, due to our choice M =  V. 

In this paper we consider one particular model, which leads to a phase 
transition within a finite time. The corresponding rate constants are 

K~=O (1.7) 

This choice for the rate constants ~ implies that the reactivity of a 
cluster is taken proportional to its mass, or volume. For K,j as in (1.7), 
Smoluchowski's equation (1.1) assumes a particularly simple form. In the 
pre-gel stage, one finds as a result of the conservation law (1.5) 

bk(t)-- - 1  ~ ijci(t) c j i t ) - -kck( t )  (1.8) 
i + j ~ k  

In the post-gel stage, where an infinite cluster is present, Eq. (1.1) does not 
give a correct description of the combined sol-gel system. The reason is 
that in (1.1) possible sol-gel reactions are not taken into account. Such 
interactions can be taken into account by adding an extra term to the 
right-hand side of (1.1), describing the reactivity of the gel. Since we 
assume that the reactivity of a cluster is proportional to its mass, the extra 
term to (1.1) is necessarily of the form - -kck( t )g( t ) .  As a consequence of 
the conservation law (1.6) one finds that ek(t) satisfies Eq. (1.8) also for 
t ~ to. (9'12) 

The macroscopic law (1.8) can be solved exactly for a general initial 
distribution ck(O). ~14"12) The structure of the solutions has been discussed in 
detail by Ziff et al. ~2~ In the terminology of Ziff et al., Eq. (1.8) is referred 
to as the F-model. In order to illustrate the qualitative behavior of the 
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solutions, we give the results for monodisperse initial conditions, (13) i.e., 
c~(0) = ~k~: 

c k( t ) = kk - Z( te - t )~ /k  ! t (1.9) 

In the pre-gel stage, i.e., for t <  tc = 1, ck(t ) falls off exponentially as a 
function of k. All mass is contained in clusters of finite size, implying that 
the sol mass is conserved, as in (1.5). At the gelpoint tc = 1, the formation 
of a gel sets in. The sol mass for t > 1 may readily be calculated from (1.9). 
One finds that Z k c k ( t ) =  t*/t, where t* is the root of the equation 
t * e x p ( - t * ) = t e x p ( - t )  in the interval 0 < t * <  1. The gel mass g(t)  is 
then determined by (1.6). For large times one finds that g ( t ) ~  l - e  -~, 
implying that eventually all mass is contained in the gel. 

Concerning the solutions of the master equation (1.2) with Ko.= (j, 
much less is known. The exact solution of the master equation (1.2) is 
known only in one special case, namely for monodisperse initial conditions, 
m k ( O ) = M 6 k l .  In this case Eq. (1.2) has in principle been solved by 
Lushnikov (6) in terms of the generating function of P(m, t). In Appendix A 
we review and extend Lushnikov's result, and we make a comparison with 
the results from the O-expansion. 

For general, nonmonodisperse initial conditions, the solution of 
Eq. (1.2) is not known. Even in the case of monodisperse initial conditions 
there still remain interesting properties, such as the two-point correlation 
functions 

( (mi( t l )  mj( t2)))  =- ( [ m i ( t l ) -  ( m i ( t l ) ) ] [ r n / ( t 2 ) -  (mj ( t 2 ) ) ] )  (1.10) 

which cannot be calculated from the exact solution given in Appendix A. 
Fortunately, the number of units M involved in coagulation processes such 
as polymerization is in general very large. For obtaining insight in the 
stochastic properties of such systems it suffices to calculate approximate 
results, valid in the limit of a large system (M--* oo ). 

In this paper we calculate approximate solutions of the master 
equation, valid if the system is large. Our method is the O-expansion 
developed by van Kampen. (~) It is a systematic expansion of the master 
equation in powers of the inverse system size. In our case the system size 
is M. 

In the case of Eq. (1.2), the O-expansion works as follows. The basic 
assumption is that for large systems the fluctuations in the number of 
k-mers rn~(t) are small compared to the average values (rnk). More 
precisely, one assumes that the numbers mk(l ) consist of a macroscopic 
part Mck(t) ,  with c~(t) given by (1.8), and a fluctuating part Ml/2~k(t), i.e., 

mk( t ) ==- Mck(  t ) + M1/2 ~k( t ) (1.1 1) 
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The idea is that the scale of the new variables ~k(t) remains finite 4 as 
M ~  ~ .  The probability distribution P(m, t) in (1.2) is then replaced by 
the probability distribution H(~, t) for the fluctuations ~ = (~1, r and 
zlo is written as a differential operator with the use of (1.11). As a result, 
the master equation (1.2) reduces to a linear Fokker-Planck equation for 
//(~, t) as M ~  o0. The Fokker-Planck equation is much more tractable 
than the original master equation. 

This paper is organized as follows. In Section 2 we discuss the expan- 
sion of the master equation in powers of M -1. We derive equations for the 
probability distribution//(~, t) and for the averages and covariances of the 
fluctuations. Monodisperse initial conditions are the subject of Section 3. We 
calculate explicit expressions for the covariances ((~t(t)~m(t)~ and the 
probability distribution //(~, t) and for the two time correlation functions 
(( ~ l(t 1 ) r (t2))). Section 4 is devoted to general initial conditions. We give 
an exact expression for the covariances ((~t(t)r in terms of 
generating functions, and we study their asymptotic behavior in various 
limits: for large cluster sizes (l, m ~ ~ ), in the scaling limit, and in the limit 
t --, 0o. Finally, in Section 5 we summarize and discuss our results. Relevant 
results from the literature are summarized in Appendices A and B. 

2. Q-EXPANSION OF THE MASTER EQUATION 

In gelling systems, the master equation (1.2) is not the most 
appropriate starting point for the O-expansion. The reason is that, in order 
to derive a macroscopic law from (1.2), one has to be able to distinguish 
between the sol and the gel. In the pre-gel stage there is no problem, since 
all clusters belong to the sol. In this case the expansion method sketched in 
the previous section may readily be applied. In the post-gel stage, however, 
the distinction between sol clusters and the gel is rather vague. The basic 
problem is that in a finite system such as (1.2) a gel cannot really be 
defined. In this section we discuss a different expansion method, valid also 
in the presence of a gel, that does not start from (1.2). 

The essential observation is that it is possible, at least in the special 
model K,y =/j ,  to construct a master equation for the marginal probability 
distribution Pr(m ~r), t) that, at time t, the numbers of clusters of size k ~< r 
are given by m~") = (ml, m2,..., mr). This can be seen by summing Eq. (1.2) 
over all m~ with k > r. It can also be seen as follows. Clusters of size k ~< r 
are involved in two types of reactions: 

1. They may react among each other. The transition rates for such 
reactions are the same as in (1.2), but now with i, j<<.r. 

4 For monodisperse initial conditions, this may be verified from (A.18), (A.19). 
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2. k-mers, with k ~< r, may react with some cluster of size j > r. The 
total transition rate for this process is M-lkmkG~, where G r -  
Zj>r  J'mj is the mass contained in clusters larger than r. 

In both processes, the transition rates may be expressed as a function of the 
occupation numbers m (~) of clusters of size k <~r only. For reactions of 
type 1 this is obvious. For reaction (2) it is a consequence of the conser- 
vation law (1.4) for the total number of units, i.e., 

G r = M -  ~ km k (2.1) 
k = l  

As a result, it is possible to construct the following master equation for 
the marginal probability distribution Pr(m (~), t): 

] S r ( m & )  , t )  ----- (2M)-1 ~ K~ i A~j[mi(m/- cS~i)P~] 
i , . j  ~ r 

+ M -1 ~ iA~[m~GrPr] 
i ~ r  

(2.2) 

where Aa and A i are difference operators. The operator Aij has been gwen 
in (1.3). The action of Ai is defined for an arbitrary function f ( m )  as 

Aif(m) = f({rnk + 6i, }) - f ( m )  (2.3) 

Note that Ai works also on the factor Gr, which depends upon m (r) as a 
result of (2.1). The master equation (2.2) is a suitable starting point for the 
Q-expansion, since (2.2) refers only on finite clusters, of size k ~< r. 

The expansion of the master equation (2.2) proceeds as follows. We 
introduce the concentrations ck(t) (k = 1, 2,... r) and the fluctuations {(~) - 
(~1,..., ~r) as in (1.11), and we write the probability distribution Pr(m (r), t) 
as a function of {~r): 

P~(m (r), t )=  M-r/2Mr(~ (r), t) (2.4) 

The factor M r/2 guarantees that Hr is properly normalized if Pr is nor- 
malized. Furthermore, the difference operator A U in (1.3) can be written as 
a differential operator in terms of the new variables {(r): 

A;j= exp (6ik + 6 jk-  ~i+j,k) 0 - 1 
k 1 

= exp(M-mD~) - 1 (2.5a) 
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where the operator D;j has been defined as 

D~ = (6;k + 6Jk - 6i+J'k) 8~k (2.5b) 
k = l  

In the derivation of (2.5a) and (2.5b) we have used the relation (1.11) 
between mk and ~k, For large M, Eq. (2.5a) can be expanded in a Taylor 
series as follows: 

Ai/= M-1/2Ds+ 1M- l ID ~2 �9 ~ , 0 ,  + " "  ( m ~  o o )  ( 2 . 6 )  

The expansion of the operator A; in (2.3) proceeds along similar lines. One 
finds that 

d ; = e x p  ( M  1/2 ~-~;) - 1 

= M  1/2 8 8 2 
~ + �89 ~.2 + ... ( M ~  oo) (2,7) 

Next, Gr in (2.1) may be expanded with the use of (1,11) for ink. For 
convenience we introduce the notation 

22 22 gr(t)=--1-- )' kCk(t); 7r(t) =~ -- L kG( t )  (2.8a) 
k - - 1  k = l  

so that Gr can be written as 

Gr(t ) = mgr(t  ) + ml/27r(t ) (2.8b) 

Clearly, gr(t) is the fraction of the mass contained in clusters of size k > r, 
and 7r(t) gives the fluctuations in Gr. Finally, we note that the time 
derivative in (2.2) is taken with m k constant. Constant mk means, according 
to (1.1 1), 

d~ ff dt = -- ml/z  b k( t ) (2.9a) 

As a consequence we find the following expression for the left-hand side of 
(2.2): 

br(m(r),t):M-r/2(~Urq- k ~Urd~k~ 

FSH~ 1'2 . 8H~] M r/2L--~---M/ k (2.9b) 
= 1 ok(t)  

due to the definition (2.4) of Hr(~ (r), t). 
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In order to obtain an equation for the probability distribution 
H~({/r), t), we insert the expressions (1.11) and (2.4)-(2.9) into (2.2). The 
result is 

OHr ~?H----Sr- MX/2 L ~k( t ) - -  
k = l  

aria 
=M1/2 ~ E Kuc,cjDJlr+ ~, ic, g,-~i ) 

i /<.r  i<~r 

+ {~ ~ KijEDij(c,~j+ cj~,) + �89 2] I L 
i,j<~r 

8 
(2.10) 

From comparison of the various M orders in (2.10) we first obtain the 
macroscopic law for ck(t) and then an equation for H,(r t). 

First we consider the leading terms in (2.10), which are of order M 1/2. 
Comparison of the coefficients of OIl,/O~k yields an equation for the 
concentrations Ck(t) (k = 1,..., r): 

Ck-- �89 E K(icici((~ik+C~Jk--g)i+/k)--kCkgr 
i , j ~ r  

[ m =~ ~ K(jciQ kc~. ( k = l  ..... r) (2.11a) 
i +  j = k  

An important point is the initial condition for Eq. (2.1 la). In this paper we 
choose the initial value ck(0) such that the fluctuations ~k in (l.11) vanish 
at t = 0, i.e., 

ck(O)-m~(O)/M; ~,(0) = 0  (k=  1 ..... r) (2.11b) 

Since the value of r in (2.11a), (2.11b) is arbitrary, we conclude that 
Eq. (2.11) holds for any finite value of k. Thus, one finds that the 
macroscopic law corresponding to the master equation (2.2) with Ko = 0" is 
Smoluchowski's coagulation equation in the form (1.8). The relevant 
results known from the literature concerning the solutions of Eq. (1.8) are 
summarized in Appendix B. 

The next order in (2.10), which are the terms of order M ~ yields an 
approximate equation for the probability distribution Hr({ (r~, t). The 
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approximation is that the terms of order M -~/2 in (2.10b) are not taken 
into account: 

~?Hr 
Ot ,= �89 ~. Ko[Do(c ,~ j+ cj~,) + �89 2] H~ 

i , j < ~ r  

+  ig -j- d rZ (2.12a) 

The initial condition for (2.12a) is 

H,({ ('), O) = 6({ ('>) (2.12b) 

This is a result of our choice (2.11b) for {(')(0). Equation (2.12b) guaran- 
tees that the probability distribution H~({ (~), t) is properly normalized. 

Equation (2.12a) is a linear, second-order partial differential equation 
in the variables {(') and t. More precisely, Eq. (2.12a) has the form of a 
multivariate linear Fokker-Planck equation,(Ls) i.e., 

~H~ ~ 1 B 02Hr 
Ot = -  2 A k j ( t ) - ~ k ( ~ j I l r ) + S k ~  ~(t)  o~-----~-~, (2.13) 

k , . j < ~ r  -, 

where the matrices Aki and Bkt depend explicitly upon time. To see this, we 
insert into (2.12a) the explicit forms of D o. in (2.5b) and of ?r in (2.8a), 
which depends explicitly on ~; (i = 1,..., r). Moreover, we replace the factor 
(ci~i+c/~;) by 2ci~i, which is allowed on account of the symmetry with 
respect to i and j. As the result, we find an equation of the form (2.13), 
where the matrices A,y and Bkt are given, respectively, by 

Akj(t) = -- ~ Ko.ci(3i~ + 6j~ - 6i+ i,k) + kjek -- kgr(3kj 
i <-~ r 

= -- k3kj + j ( k  - j )  c k_j( t )  (2.14a) 

and 

Bkt(t) = �89 ~ Kijcicj(fik + 6jk -- 6i+j,~)(6iz + @ - -  6~+j.l) + kc~ grfikl 
i , j < ~ r  

-- E k ( l -  k)  ck cz- k + l(k - l) czck_ z] (2.14b) 

In (2.14a), (2.14b) it is understood that c / ( t ) - O  if j~<0. 
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The Fokker-Planck equation (2.13) for //~({{~1, t) can be solved 
exactly in terms of the averages (~m) and the covariances ((~m ~n ~ of the 
fluctuations, which are defined, respectively, as 

(~m(t))=- f d~(r) ~mHr(~(r),t) (m<<.r) (2.15a) 

and 

((~m(t)(n(t)~-- ((m(t)~n(t))--(~m(t))(~n(t)~ (m,n<~r) (2.15b) 

More precisely, it can be shown (Ref. 1, Section VIII.6) that the solution of 
Eq. (2.13) with the initial condition (2.12b) is the multivariate Gaussian 
distribution determined by the averages and covariances (2.15a), (2.15b). If 
we define the covariance matrix ~(t) as 

3m,,(t)=- ((~m(t)~n(t))) (m,n<~r) (2.16) 

then llr({ (rl, t) may be expressed in terms of ({(r)) and E as follows: 

//~(~(~), t) = (27r)-~/2(Det ~) ~/2 

xexp[_�89 ({(r~)).Z--l.({(r)__ ({(r)))]  (2.17) 

Thus, in principle, Hr({ (~), t) is known if the covariances ((~,,,~m)) and the 
averages (~,~) have been calculated. 

First we consider the average fluctuations (~, , ( t ) )  in (2.15a). In order 
to obtain an equation for (~m), we multiply (2.13) with ~m and integrate 
over all {(r). Partial integration over ~k and ~t shows that the second term 
on the right in (2.13) does not contribute. The first term yields a 
contribution only if k = m, and we find 

d 
d-~t (~m) = 2 Amj(t)(~J) (m = 1,..., r) (2.18) 

j~r 

The initial condition for (2.18) follows from (2.11b) as ( ~ m ( 0 ) ) = 0  
(m= 1 ..... r). Since (2.18) is a linear equation of (~(r)~, we find that the 
average fluctuations vanish for all t >/0: 

(~m(t)~ = 0  (all t~>0; m =  1 ..... r) (2.19) 

Since the value of r in (2.19) is arbitrary, we infer that (~m(t))=0 for all 
finite values of m. 

Similarly, we obtain an equation for the covariances (( ~m~n )), which 
are defined in (2.15b). Note that in our case the covariances are equal to 
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the second moment (4m(t)~n(t)) as a result of (2.19). Multiplication of 
(2.13) with 4 ~ . ,  and integration over all {(~) yields the following equation 
for ((4m~,,)), to be solved with the initial condition ((4m(0) 4,(0))) =0:  

d 
dt ((4m ~n)) = ~  (A~j((~,~j)) + A m i ( ( ~ j ) ) )  + Bm~ (2.20) 

J 

In the derivation of (2.20), we assumed that m ~<r and n ~<r. However, 
since the value of r is arbitrary, one finds that Eq. (2.20) holds for all finite 
values o f  m and n. The matrix elements A k/ and B~I have been given in 
(2.14a), (2.14b). Note that Akj and Bk~ are independent of r. 

For future use we note that a drastic simplification of Eq. (2.20) occurs 
if we transform from ( ( ~ 4 n ) )  to a new variable em~(t ) defined as 

emn(t) -- r {~(t))) -- 6mnC~(t) (2.21) 

In order to obtain an expression for em~(t), we substitute the definition 
(2.21) into (2.20). The result is 

O~, ,=~'(Anjemi+A,weni)+Bmn+Anmc,~+Am~cn-3mn(  ~ (2.22) 
J 

Insertion into (2.22) of the explicit expressions (2.14a), (2.14b) for Amn and 
B .... in combination with the macroscopic law (2.11a), yields the following 
equation for emn(t): 

km, = ~ (An/emj + Amjeni) + mncmcn (2.23a) 
J 

= - - ( m + n ) e m n +  ~ O'cie,w+ ~ O'cienj+mncmC, (2.23b) 
i + j = n  i + j ~ r n  

The initial condition for Eq. (2.23) is emn(0)=--3ranCh(O). The sim- 
plification in (2.23) becomes particularly clear if one compares Eq. (2.23a) 
with the equation (2.20) for the covariances ((4m~,))- Both equations are 
linear and inhomogeneous, but the inhomogeneity in (2.23a) is much 
simpler than in (2.20). The solution of Eq. (2.23) for monodisperse initial 
conditions will be given in Section 3. The solution for general initial 
conditions ck(0) is the subject of Section 4. 

We add a few remarks. The first concerns the pre-gel stage (t < to), 
where the sol mass is conserved. In this case the conservation law (1.4), in 
combination with (1.5) and (1.11), implies the following relation for the 
fluctuations ~ = (41, 42,..): 

~ k4k = 0 (t < to) (2.24) 
k - 1  
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The property (2.24) may also be verified explicitly in the Fokker-Planck 
equation (2.13) with r--+ oo or, equivalently, in Eq. (2.20). To see this, we 
introduce 

X(t) ==- k~k = Z mn(~m(t) ~,(t)) (2.25) 
k 1 m,n  

An equation for X(t) can be obtained from (2.20) by multiplying (2.20) 
with mn and summing over all m and n. The result is 

d 
d--TtX(t) = 2  ~ mnA,,j(({m{/)) + ~ mnBm, 

m , n , j  m,n 

(2.26) 

In the pre-gel stage, where (1.5) holds, the sum involving B,~ vanishes. 
This may be seen from the explicit expression (2.14b) for B,n~. Similarly, it 
follows from (2.14a) that for t<t~., Y.,nAnj=jM2(t ), where the second 
moment M2( t )=  Z k2ek(t) has been defined in (B.5). As a result, Eq. (2.26) 
takes the form of a closed differential equation for X(t): 

d 
X(t) = 2M2(t) X(t) (t < to) (2.27) 

to be solved with the initial condition X(0)=  0. The solution is X(t)= 0 for 
all t < t,. Hence, (2.24) has been proved using the Fokker-Planck equation 
(2.13). 

Our second and final remark is concerned with the post-gel stage and, 
more specifically, with the definition of a gel. The number of units in the 
gel, which is denoted as G(t), may be determined from (2.8a), (2.8b) if we 
take the limit r--* oo. The result is 

G(t) = Mg(t) + M~"zT(t) (2.28a) 

where we have defined 

g ( t ) =  1 -  ~ kck(t); , / ( t ) = -  ~ k~k(t) (2.28b) 
k = I  k = l  

Clearly g(t) represents the average gel fraction and 7(t) gives the fluc- 
tuations in the gel. The point is that the equations (2.28a), (2.28b) for the 
gel are meaningful only within the context of the Q-expansion, i.e., in the 
limit M --* oo. This clarifies our remark at the beginning of this section, that 
the gel cannot really be defined in a finite system. For instance, the gel 
could not be defined by taking the limit r-+ oo in Eq. (2.1), i.e., before the 
f2-expansion is applied. 
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3. M O N O D I S P E R S E  I N I T I A L  C O N D I T I O N S  

In this section we consider the special case of an initially monodisperse 
system, i.e., 

m~(O) = M ( ~ k l  ; Ck(O ) = 6k~ (3.1) 

The case of monodisperse initial conditions is relatively easy, and many 
properties of the fluctuations may be calculated explicitly. This section is 
subdivided into three parts. In Section 3.1 we calculate the covariances 
<<~m(t) in(t)>>, and we discuss their properties in the pre- and post-gel 
stages. The results will be used in Section 3.2 to obtain the marginal 
probability density Hr({ (r), t) for an arbitrary value of r. Finally, in 
Section 3.3 we calculate the correlation functions ((r 

3.1. The  Covar iances  

The covariances ((~m(t)~n(t))) can be calculated from (2.20) or, 
equivalently, from Eq. (2.23) for emn(t). In Section 4.1 we use generating 
function techniq.ues to solve Eq. (2.23) and we find that emn(t ) has a 
remarkably simple form if the initial distribution is monodisperse, namely 

emn(t ) = --(1 - t) mncm(t) cn(t) (3.2) 

Here we verify simply by substitution of (3.2) into (2.23) that Eq. (3.2) 
gives the correct, expression for em~(t ) and satisfies the correct initial 
condition. In verifying (3.2) it is convenient to use the following relation: 

~. O'Ciemj=-( l - t )mCm ~ ij%icj 
i + ] = n  i + j = n  

= - - ( 1 - - t )  mnc~ .1 ~ ijcicj 
i + j = n  

= - (1  - t) mnc,~(e~ + ncn) (3.3) 

In the derivation of (3.3) we have used Smoluchowski's equation (1.8). 
As an immediate consequence of Eq. (3.2) and the definition (2.21) of 

emn(t), we find the following result for the covariances ((~,~r 

( ( ~ ( t )  ~n(t))) = ~mnCn(t)- (1 -- t) mnCm(t ) c,(t) (3.4) 

in agreement with Lushnikov's exact solution, i.e., Eq. (A.19). 
Equation (3.4) has the following interpretation. First we consider the case 
m ~ n. In the pre-gel stage (t < 1) one finds that ((~m~,)) is negative. This 
implies simply that if the number of m-mers exceeds the average ((,~ > 0), 
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there will, on the average, be fewer n-mers (~n <0).  In the post-gel stage 
( t>  1) it follows from (3.4) that the covariances ((~m~,)) are positive. In 
this case (3.4) gives the surprising prediction that if ~m > 0, then most likely 
the mass of the sol phase as a whole exceeds the average, so that there is 
less gel (and vice versa for fluctuations ~,~ < 0). Finally, if rn and n in (3.4) 
are equal, we observe that the variances 

(((~m(t))2)) = c,,,(t) [ 1 -- (1 - t) m2em(t)] (3.5) 

are strictly positive for all t > 0. In the post-gel stage (t > 1) this is obvious. 
In the pre-gel stage it is a consequence of the inequality m2Cm(t)< M2(t ) = 
( 1 - t )  -I, where we used Eq. (B.11) for the second moment M2(t ). 

The result (3.4) for the covariances in the sol may be used to calculate 
the covariances of the fluctuations in the sol and the gel. From (3.4) and 
the definition (2.28b) of the fluctuation ~(t) in the mass of the gel it follows 
that 

( ( ~ ( t )  y(t)))  = - ~ n((~m(t ) ~ ( t ) ) )  
t z =  1 

= -mcm(t)[1  + ( t -  1) Mz(t)] (3.6) 

We note that the right-hand side of (3.6) vanishes in the pre-gel stage, 
where M2(t ) = ( 1 -  t) -1. Physically this is obvious, since for t <  1 there is 
no gel. This may also be seen from the conservation law (2.24), which 
implies 7(0 = 0 if t < 1. The variance of the gel fluctuations 7(t) can readily 
be determined from (3.6) by multiplying with - m and summing over all 
m. The result is 

(((7(t))2)) = M2(t)[1 + ( t -  1) M2(t)] (3.7) 

where M2(t) - -  (1 - 0 -I if t <  1, and M2( t )~  ( t -  1) -1 if t$1, as may be 
seen from (B.11) and (B.12). Finally, we remark that the average 
fluctuation in the gel mass vanishes for all t > 0: 

(~(t) ) = -- 2 m(  ~m(t) ) = 0  
m 

This follows directly from Eq. (2.19). 

(3.8) 

3.2. The Probability Distribution 

The next step is to calculate the marginal probability distribution 
Hr(~, (r), t) in (2.17), which is completely determined by the average fluc- 
tuations ({(r)) and the covariance matrix ~(t). The averages ({(r)) vanish 

822/49/5-6-2 
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for all t ~> 0 as a result of (2.19). Furthermore, it follows from the definition 
(2.16), in combination with (3.4), that the matrix elements 3m, are equal to 

~mn(t)=cSmnc,(t)-(1-t)mne~(t)c~(t ) (m,n<~r) (3.9) 

In order to obtain an explicit expression for Hr(~ ~r), t), we calculate the 
inverse of -~(t) first and then its determinant. 

The inverse of the matrix ~ in (3.9) has a particularly simple form, 

(Z-l)n/=(1/c~)f,j+nj/v~ (n,j<~r) (3.10a) 

where the time dependence of v~ is given for all t >~ 0 by 

Vr(t ) = (1 -- t) -1 -- ~ k2ck(t) (3.10b) 
k- - I  

It can readily be verified by matrix multiplication of (3.9) and (3.10a) that 
Z i in (3.10) is indeed the inverse of ~ in (3.9). 

The calculation of the determinant of ~ is tess trivial. The simplest way 
to obtain the prefactor of the exponential in (2.17) is as follows. In order to 
simplify the expressions for H~(~ ~rl, t), we introduce the one-dimensional 
Gaussian distribution with zero mean and variance cr 2, which is defined as 

g(x; ~2) = (2~o.2) 1/2 exp(_x2/2a2) (3.11) 

With the use of (3.11) and the explicit expression (3.10) for ~ 1, we can 
write Eq. (2.17) in the form 

H,(~ ~'), t) = (2~z) r/2(det ~) 1/2 exp - ~2/2cj- j~j 2Vr 
j =  1 j 1 

(3.12a) 

= C(t) g J~s; vr g(~s; 4/) (3.12b) 
j i / j = l  

where C(t) is an as yet unknown normalization factor. 
In order to calculate C(t) in (3.12b), we integrate Eq. (3.12) over all 

~r). Since we assume that the probability distribution Hr(~ ~r), t) is properly 
normalized, this yields 

l=C( t )  f dq(r)g ~Is;Vr g(rlj;j2cj) 
j 1 / j = l  

: C ( t )  f ~ dxg(x;Vr)  fd l l ( r )6  ~= q j - x  g ( r / j ; j 2 c / )  
co j 1 j 

(3.13) 
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In the first step in (3.13) we have introduced new variables II(r) = (t/1 ,..., ~,.), 
which are related to {(r) as t / j - j { j .  In the second step we introduced an 
additional delta-function. The reason for this is that the second integral on 
the right in (3.13) is by definition (Ref. 1, Section I.5) the probability 
density that the variable ~ =  1 t/j assumes values in the interval (x, x + dx). 
For Gaussian variables qj with variance j2cj we know (Ref. 1, Section 1.6) 
that Zy=,r/ j  is again normally distributed, now with variance Z ~ j 2 c i .  
Thus, Eq. (3.13) reduces to 

1 = C(t) j dx g(x; vr) g x; ~ j2cj (3.14) 

Calculation of the integral in (3.14) is elementary. As a result we find that 

C(t) = [2~z/(1 - t)] ~/2 (3.15a) 

where we have used the explicit form (3.10b) of Vr(t ). AS an immediate 
consequence we find for the factor det ,E in (3.12a) 

det Z =  (1 - t)v~ ( I  c: (3.t5b) 
j =  1 

Note that det-= is strictly positive for all t > 0. For t > t this is obvious 
from (3.10b), since in this case v~(t)< 0. For t < 1 the positivity of det ~ or 
v~(t) follows from (B.11 ) with t c = 1. 

One finds the following explicit expressions for H~({ (r~, t). In the 
pre-gel stage ( t<  1), where v~ is positive, it follows from (3.12b) that 

H~({(r),t) = ~77_ t g 2 J~i ;vr g(~j;ej) ( t < l )  (3.16a) 
i=1 j=~ 

The same expression (3.16a) is valid in the post-gel stage, but in this case v, 
is negative. An alternative form for t > 1 is obtained with the use of (3.11), 
namely 

Hr(%( ' ) , t )=[ ( t - l )  lvr!]-l/2 exp I ( 
J 

)2/ I0 
J 

( t >  1) (3.16b) 

Note that, for large ~j, the exponential in (3.16b) becomes large. Also note 
that the normalizability of Hr is guaranteed by the factor g(~j.; Q), which 
has a smaller variance. 

Finally, we discuss the probability distribution in the limit r ~ oo. The 
result is dramatically different in the pre- and post-gel stages. For t < 1 we 
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know from (3.10b) and (B.11) that v r ~ 0  as r ~  ~ .  As a result, the factor 
g(~j~j; v,) in (3.16a) reduces to a delta function: 

17(~,t)=\l_t j 6 • J~j l~ g(~J;#) ( t < l )  (3.17) 
\ j =  1 / j=  1 

On the other hand, in the post-gel stage, where 

Iv~l-~v~-(t-1)-l+M2(t) ( r ~ )  (3.18) 

we infer from (3.16a), (3.16b) that, as r-~ ~ ,  / / r  takes the form 

/ 27z ".~1/2 
,t: t , -  r) fi (3.19a) 

j = l  

--[(t-1)v~o] ~i2exp(~,212voo) ~I g(~s;es) ( t> l )  (3.19b) 
j - 1  

where i =  ~ / - 1 ,  and 7 has been defined in (2.28b). The delta function in 
(3.17) clearly reflects the conservation law (2.24), which holds only in the 
pre-gel stage. At the gelpoint t<. the delta peak changes abruptly to a 
Gaussian form with an imaginary variable and an infinite variance. For 
t >  1 the variance Voo(t) decreases monotonically, and vanishes as t--+ oo. 
This reflects the behavior (3.7) of the fluctuations in the gel: the size of the 
fluctuations diverges as t ~ t<., and vanishes in the limit t--+ oo, when all 
mass is contained in the gel. 

3.3. The Correlation Functions 

In this subsection we calculate the (two-time) correlation functions 
lCnm(g2, /1), which are defined as 

= (~, , ( t l )  (,(t2)) - (~m(tl))(~,(t2)) (3.20) 

We assume that t2~> tl >~0. From Section 2, Eq. (2.19), we know that the 
average fluctuations (~,~(t~)) and (~n(t2)) vanish for all t~ and t2. Hence 
Xnm(t2, tl) is also given by 

grim(t2, tl)= (~m(/1) ~ n ( t 2 ) )  (0 <~ t 1 <~ t2) (3.21) 

The method for calculating tCnm(t2, ll) consists of two steps. In the first step 
we assume that at tl the fluctuations are given by {(t~), and we calculate 
the conditional average (~n(tz)i~(tl))  of in at time t 2. In the second step 
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we multiply (~ , ( t z ) l~( t l ) )  with ~m(t~) and we average over all possible 
values of ~(t~). The result is (3.21). From now onward we drop the label 
~(tl), and we denote the conditional averages (~,(t2)]~(t~))  simply by 
~n(t2). 

As a first step we calculate the conditional averages ~n(t2) for a given 
initial value ~(tl). The averages ~n(t) satisfy the relation (2.18), with Ams 
given in (2.14a), i.e., 

d _ _  _ _  _ _  

3,, = ~ zJci~j- n~,, (3.22) 
i + j - - n  

In order to solve (3.22), we introduce the generating function g(x, t) of 
~,,(t), which is defined as 

Z(x, t) - ~, r e n~ (3.23) 
n = l  

An equation for Z(X, t) can be obtained from (3.22) by multiplication with 
e nx and summation over all n. The result is 

0K 0K 
c3t + I-1--f(x,  t)] ~ x = 0  (3.24) 

where f ( x ,  t) is the generating function of kc~(t) satisfying (B.3). 
Equation (3.24) can be solved as follows. We transform from Z(x, t) to 

a new function W(z, t), which is defined as 

W(z, t)==_ Z(x, t); z -  f (x ,  t) (3.25) 

where z = f ( x ,  t) is the image of x at time t. To obtain the initial condition 
W(z, t) at tl from a given function Z(x, tl), we need the point xl that is 
mapped at time t~ onto the same z = f ( x l ,  tl). Hence 

W(z, t , ) =  W(f (x , ,  tl), t~)= Z(xl, t~) (3.26) 

Insertion of the definition (3.25) of W(z, t) into (3.24) and use of the 
differential equation (B.3) for f ( x ,  t) shows that W(z, t) is independent 
of t, i.e., 

O 
Ot W(z, t )=0  (3.27) 

From (3.27) we infer that g(x, t) may be expressed in terms of its initial 
value Z(x, t,) as follows: 

•(x, t ) =  W(z, t )=  W(z, t l )=X(Xl,  tl) (3.28) 
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The relation between the points (x, t) and (x~, t~) having the same image z, 
i.e., 

f ( x ,  t) = z = f ( x l ,  t l )  (3.29a) 

is given by 

x 1 = x + (t - t l ) [ f ( x ,  t) - 13 (3.29b) 

This can be seen from (B.5a), (B.5b). 
The conditional average ~n(t2) can now be obtained as the coefficient 

of e "x in Z(x, t2). If we introduce the notation y - e  x, then ~n(t2) can be 
written as a contour integral in the complex plane as follows: 

z(x, t2) (3.3o) 

The path of integration in (3.30) is a closed contour in the complex y 
plane, which circles the origin once in the counterclockwise direction. 
Insertion of (3.28) into (3.30) and use of the definition (3.23) of )~(x, t) 
gives 

2gi -fy-Ty Z (x l ,  tl) 

= ~ Y, t ( t2 ,  tx) C,(t~) (3.31a) 
/ = 1  

where Y,t( t2,  t l )  is defined as 
1 dy ~,1 

rnt( t 2, t l ) =- ~-~i~i ~ - ~  e (3.31b) 

The matrix Y(t2,  t l) ,  usually called the evolution matr ix  of the problem 
(3.22), relates the average fluctuations ~n(t2) at time t2 to the initial value 

The last part of step one is to calculate the explicit time dependence of 
the matrix Ynt in (3.31b). In order to do this, we express x and xl in terms 
of z, t2, and tl with the use of (3.29a) and (B.32). (Note that in this stage 
for the first time we use the condition that initially the system is 
monodisperse.) The result is 

y = e x = zet2(1 z); e.,t = ze,~l -z)  (3.32) 

Insertion of (3.32) into (3.31b) gives, after some algebra 

Y,,,(t2, t l ) = e , , l  , ,21_a~ dz [ ( l _ t 2 z )  e(,,2_,,l)~] (3.33) 
27ziY z " - t + l  
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The contour integral in (3.33) is equal to the coefficient of z" l in the factor 
[-.-]. Expansion of the exponential e (n'=-l'llz in [ . . . ]  readily yields the 
following explicit expression for Ynz(t2, tl): 

(nt2-- ltl)n t- 1 
Y,l(t2,/1) = l(t2 -- tl) e <-"'= (3.34) (n - /)!  

We note that Ynt vanishes if l >  n. Combination of (3.34) and (3.31a) finally 
gives the desired expression for the conditional average ~,(t2). 

The second step in the calculation of Xnm(t2, tl) is to multiply (3.31a) 
with ~m(tl) and to average over all possible values of {(tl). In combination 
with (3.21) and (3.4) we find that 

Xnm(t2, tl)= ~ Y,l(t2, t~)(( ~z(t~) ~m(tl))) (3.35a) 
I~l 

= Ynm(t2, tl)Cm(tl)--(1--tl)mCm(t,) ~ Y,,l(t2, t~)lc1(t~) 
l = 1  

(3.35b) 

The second term in (3.35b) may be simplified with the use of (3.31b), 
namely 

l e d y  
Ynl( t2, tl) lCl(tl) :'~i~i(~ ~ ' g  f (xl, tl) 

l = 1  

l ~ d y  
- y-7 Y(x, 

= nc,,(te) (3.36) 

In the second and third lines of (3.36) we have used, respectively, 
Eq. (B.5a) and the definition (B.2) of f (x ,  t). Combination of (3.35b) and 
(3.36) yields 

Knm(t2, t~)= Y,,~(t2, t,)Cm(tl)--(1 -tl)mncm(tl)C~(t2) (3.37) 

In combination with (3.34) this gives the desired explicit form of the 
correlation functions tCnm(t2, /1)" As a special case we consider the 
autocorrelation functions ((~m(t~) ~m(t2))), which are obtained from (3.37) 
if we set n = m. The result is 

tCmm(t2, tl)=Cm(tl)e m('2-ql--(1 --tl)m2Cm(tl)Cm(t2) (3.38) 

One readily verifies that, in the limit t 2 ~. tl, Eqs. (3.37) and (3.38) reduce to 
the results (3.4) and (3.5) for the covariances ((~m(tl)~,(tl))). The long- 
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time behavior of the nonequilibrium autocorrelation function (3.38), with 
t2~> tl, is determined by the long-time behavior of Cm(t2) given in (B.31). 
The relative magnitude of the second term as compared to the first one in 
(3.38) grows as tT -1 and becomes positive (negative) for sufficiently large 
t2 if the initial time tl occurs after (before) the gel point. 

Finally, we discuss the differences between the pre- and post-gel stages. 
We consider the pre-gel stage first. In this case the mass conservation law 
(2.24), i.e., Z k G  =0,  implies the following relations for the correlation 
functions gnm(t2, tl): 

~mK~m(t2, t l)=0 (tl < 1) (3.39a) 
m=l  

~nKnm(t2, t l ) = 0  (t 1 ~< t2< 1) (3.39b) 
n=l  

In view of (3.21) this is obvious, since ~m m~m(tl)= 0 and Z~ n ~ ( t 2 ) =  0. 
The relations (3.39a), (3.39b) also may be verified from the explicit 
expression (3.37) for tCnm(t2, tl). 

Next we consider the correlation functions in the post-gel stage, where 
t2 > 1, and possibly also tl > 1. The correlation functions (3.37) in the sol, 
in combination with the definition (2.28b) of Y(0, also determine the 
correlation functions of the gel. The cross-correlations between the sol and 
the gel are given by 

1s tl) ~- ( (7( t l )~ , , ( t2) ) )=  -- ~ mKnm(t2, ti) 
m=l 

(3.40a) 

KGm(t2, t l ) ~  ((~m(tl)];(t2)))= -- ~ nKnm(t2, t l )  
n=l  

(3.40b) 

The correlation functions xnG and KGm are only nonvanishing for t~ > 1 
and t2> 1, respectively, as a result of (3.39a), (3.39b). Similarly, the 
autocorrelation function of the gel fluctuations can be written as 

KGG(t2' t l ) ~  r  = E mnK.m(t2, t,) 
m,n 

(3.41) 

To calculate the above expressions, we consider Eq. (3.40a) first. From 
(3.36) and (3.37) we infer that 

tGa(t2, tt) = --ncn(t2)[1- (1 -- tl) M2(tl)]  (3.42) 
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Multiplication of (3.42) with - n  and summation over all n yields the 
autocorrelation function xGc: 

~aa(t 2, t l ) =  M2(t2)[1 - (1 - tl) M2(tl)]  (3.43) 

Note that tcna and ~caa vanish if t~ < 1. 
In order to calculate the correlation function Kam in (3.40b), we 

consider the sum Zn n~n(t2), which can be expressed in terms of ~(tl) with 
the use of (3.23) and (3.28) for Z(x, t). We find that 

n~n(t2) = ~0--~Zx (0, t2) 
n = l  

az ) 0x,  (0, t2) 
tl ax 

~ X l  (0, t2) ~ l~t(tl)e ~' (3.44) 
~x l~1 

where x~ and Ox~/Ox are to be evaluated in the point (x, t) = (0, t2): 

x,(O, t2)= -(t2 - t~) g(t2) (3.45a) 

0x, (0, t2) = 1 + (t 2 - -  t,) M2(t2) (3.45b) 
#x 

The correlation function KGm is obtained if we multiply Eq. (3.44) with 
-~m(tl) and average over all ~(tl). The result may be expressed in terms of 
the generating function f(x, t) in (B.2): 

[ 8 f ( x " t l ) ]  Kam(t2, t l ) =  --[1 + (t 2 - - t ,  ) M2(t2) ] mCm(tl) e rex'- (1 -- t l )~x  

(3.46) 

with x~ = x~(0, t2) given in (3.45a). The factor Of/~x in (3.46) may be deter- 
mined from (B.9). We know from (B.4a), in combination with (3.29a), 
that Xo(X~, t~)=Xo(X, t). Consequently, one finds for xl in (3.45a) that 
X o ( X l ,  t l ) = X o ( 0  , t2) and hence, due to (B.9), that 

8]" M2(t2) (3.47) 
~XX (XI '  t l )  = 1 "~ ( t  2 - -  t l )  M 2 ( t 2 )  

Finally, insertion of (3.45a) and (3.47) into (3.46) gives the following 
explicit result for ~ca,~(t2, tl): 

~Cam(t2, t,)= -mcm(t,){ [1 + ( t 2 -  t,) M2(t2)] 

X e - m ( t 2 - q ) g ( t 2 ) -  (1 - -  tl) M2(t2) } (3.48) 
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Note that ~:G,, vanishes if t 2 < 1, as a result of (B.11). Furthermore, mul- 
tiplication of (3.48) with - m  and summation over all m gives again 
Eq. (3.43) for ~ccG. 

4. G E N E R A L  IN IT IAL C O N D I T I O N S  

Here we study the covariances ((~m(t)r  in coagulating systems, 
starting from general initial conditions ink(0) or G(O)=mk(O)/M. The 
organization of this section is as follows. In Section 4.1 we given an exact 
expression for the covariances ((~,~n)) in terms of their generating 
function. From the generating function we study the behavior of ((~m~))  
in the following three limits: 

1. The limit of large cluster sizes (m, n ~ ~ )  with the time t fixed 
(Section 4.2). 

2. The scaling limit, where m, n--+ m and the average cluster size 
s ( t ) ~  ~ ,  with the scaling arguments m/s(t) and his(t) fixed 
(Section 4.3). 

3. The large-time limit: t --* ~ ,  with m and n fixed (Section 4.4). 

Furthermore, in Section4.5 we study the covariances ((~,,7)) and the 
variance ((72)) of the fluctuations in the gel mass. Finally, at the end of 
Section 4 we add a few remarks concerning the probability distribution 
l"Ir(~ (r), t) and the correlation functions Knm(t2, t 1). 

4.1. The  Exact  So lu t ion  

The covariances ((~m~n)) c a n  be calculated from Eq.(2.20) or, 
equivalently, from Eq. (2.23) for emn(t ). The relation between emn and 
((r162 is given in (2.21). Here we solve Eq. (2.23) for em,(t ) with the 
general initial condition 

em,,(O) = --6m~C,(O) (4.1) 

In order to solve Eq. (2.23), we introduce the generating function h(x, y, t) 
of e,~n(t): 

h(x, y, t) - ~ em~(t) e rex+ ny 
m , n  

The initial value of h(x, y, t) is given, as a result of (4.1), by 

(4.2) 

h(x, y, 0 ) =  - v ( x +  y); v ( z ) - ~ G ( O ) e  ~ (4.3) 
n 
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An equation for h(x, y, t) is obtained by multiplying Eq. (2.23) with e "~+ny 
and summing over all m and n. The result may be expressed in terms of the 
generating function f ( x ,  t) of kck(t), which is defined in (B.2): 

c~h 3h ~h 
& +  [ I - f ( x ,  t)] ~xx + [1 - f ( y ,  t)] -~y--f(x,  t ) f ( y ,  t) (4.4) 

The generating function f ( x ,  t) satisfies the differential equation (B.3) for 
all t/> 0 and is implicitly determined by (B.4). 

Equation (4.4) can be solved as follows. We transform from h(x, y, t) 
to a new function W(zl, z2, t), which is defined by 

and 

W(zl,  z2, t) - h(x, y, t) (4.5a) 

The solution is 

W(zl,z2, t )=z i z2 t+W(z l , z2 ,0 )  (4.7) 

The initial value W(zl, z2, 0) in (4.7) can be expressed in the initial value 
(4.3) of h(x, y, t). The result is 

W(z~, z2, O) = h(xo, Yo, O) = -V(Xo + Yo) (4.8a) 

where the functions Xo(X, t) and Yo(Y, t) are implicitly defined through 

f (xo ,  O) =zl  = f ( x ,  t) 

f (Yo ,  O) =- z2 = f ( y ,  t) 
(4.8b) 

Comparison with (B.2) and (B.4a), (B.4b) yields the following explicit 
expressions for Xo and Yo: 

Xo(X, t)  = x + t f ( x ,  t )  - t 

y o ( y ,  t) = y + t f (y ,  t ) - t  
(4.9a) 

zl - f ( x ,  t); z2 =- f ( y ,  t) (4.5b) 

Substitution into (4.4) of (4.5a), (4.5b) gives a very simple equation for 
W(z~, z2, t) namely 

3 
Ot W(z~, z~, t) = zlz2 (4.6) 
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Combination of Eqs. (4.5)-(4.9a) finally shows that 

h(x, y, t)= tf(x, t) f (y ,  t ) -  V(Xo + Yo) (4.9b) 

is the desired solution of (4.4). 
In principle, Eqs. (4.9a), (4.9b) given an exact relation for emn(t), 

which may be calculated from h(x, y, t) by inversion of (4.2). As an exam- 
ple, consider monodisperse initial conditions, where v(x)---f(x, 0)-=e x. In 
this case one finds with the use of (B.4a), (B.4b) that h(x, y, t) takes the 
form 

h(x, y, t)--- - ( 1 -  t) f(x, t) f (y ,  t) (4.10) 

and inversion of (4.10) immediately gives (3.2) as a result of the definition 
(B.2) of f(x, t). For general initial conditions, the inversion of (4.2) is 
difficult, and the results are not transparent. For this reason we consider 
only the asymptotic properties of em,(t ) in the limits 1-3. 

4.2. F l u c t u a t i o n s  at  Large C lus te r  Sizes ( m ,  n -~ oo) 

First we write (4.9b) in a form that is more useful for our purposes. 
Instead of h(x, y, t) in (4.2), we consider the generating function 

O2h 
H(x, y, t)-= ~ mnem,(t)e mx+ny= (x, y, t) (4.11) 

An explicit expression for H(x, y, t) may readily be obtained by differen- 
tiation of (4.9b).  The result is 

8f Of 8x 0 ~ v  o H(x, y, t l=t-~x(X,t)~y(y, t)-u'(xo+ Yo)-~x (x,t) -, (y,t) 

= I t -  u'(X~176 I Of t ) ~ ( y , t )  (4.12) 
u'(xo)  u (y0)J 7x (x, 

where we have used the definition (B.2) of u(x), i.e., u(x) =f(x, O) = v'(x). 
The partial derivatives OXo/OX and Oyo/Oy have been calculated from (4.8b). 
Inversion of H(x, y, t) in (4.12) yields an expression for em,(t). Formally, 
the result can be written as a double contour integral in the complex plane: 

(1)2  dw, L dw2 
mne,~,(t)=,\Zgl/I~- j ~W1 W~2+ 1 H(x, y, t) (4.13) 

where we have defined wl - e ~ and w2 ~ e y. The integration paths in (4.13) 
are closed contours circling the origin in the W l or w2 plane once in the 
counterclockwise direction. 
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Equation (4.13) is a convenient starting point for calculating the 
behavior of em,(t) at large values of m and n. This will be done with the use 
of the saddle point method. From Appendix B.2 we know for universal 
solutions ck(t) that the function x(f,  t), or equivalently, wl(f, t), has a 
saddle point at f~.=u(x~). The value of x~(t) is given in (B.16), i.e., 
u '(x6)= t -1. The corresponding values of x(f,  t) and wl(f, t) are Xs(t)= 
x ~ - t f ~ +  t and w,(t)= e x'(~ Accordingly, we calculate the first contour 
integral in (4.13) along the curve wl=w~(t)e ie~, with -n<~Ol<~n. 
Similarly, the second contour integral in (4.13) is calculated along the curve 
w2=ws(t)e  i~2 with -n<~p2<~n. As a result, for large m and n the 
integrand in (4.13) is sharply peaked about the point (x, y) = (Xs(t), Xs(t)), 
and only values of (x, y) close to this point contribute. Hence, substitution 
into (4.13) of the explicit form (4.12) of H(x, y, t) gives 

[u (x;)]2J 

dw 2 af  dw 1 Of (x, t) ~ w~ + (y, t) 

~t[1- tu ' (2x~)](mn)2Cm(t)c , ( t )  (m, n--* o o ) ( 4 . 1 4 )  

In the first step of (4.14) we used that, at the saddle point, the values of Xo 
and Yo are given by Xo = Yo = x6(t). In the second step we used the relation 
(B.16) for x6(t ) and the definition (B.2) of f ( x ,  t). The covariances 
((~m(t) ~,(t))) can be calculated from (4.14) with the use of (2.21). 

An explicit expression for em,(t ) at large values of m and n is obtained 
if we substitute into (4.14) the known behavior (B.18) of ck(t) at large 
cluster sizes (k-~ c~). The result, valid in both the pre- and post-gel stages, 
is 
em~(t ) ~ [1 -- tu'(2x~)](mn)-3/2[2nt2u"(x~)] -1 w~(t)-(m+,) (m, n --* ~ )  

(4.15) 

The prefactor E1 - tu ' (2x~)]  in (4,15) vanishes at the gelpoint. This follows 
from (B.19) and (B.16), i.e., x~(tc)=0 and to= [u'(0)] -1. The prefactor 
is negative in the pre-gel stage, where t < t c =  [-u'(0)] ~, and positive 
for t>tc.  For monodisperse initial conditions, where u(x )=e  x and 
x~(t)= - l o g  t, Eqs. (4.14) and (4.15) are in agreement with the exact 
solution (3.2). 

4.3. The Scaling Limit 

Next we show that the covariances ((~m(t)(n(t))) approach a scale- 
invariant form in the scaling limit, which is the limit where m, n ~ 0% and 
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the average cluster size s(t) ~ 0% with m/s(t) and n/s(t) fixed. The behavior 
in the scaling limit of the macroscopic solution ok(t) is summarized in 
Appendix B.3. 

We start again from Eq. (4.12) for H(x, y, t). The essential observation 
is that, in the scaling limit, the prefactor [ . . . ]  in the right-hand side of 
(4.12) depends only on the time t, and not on the scaling arguments 
rl =-m/s(t) and r z - n / s ( t  ). This can be seen as follows. We specify our 
results for the choice s( t )=M3(t) /M2(t) ,  but different choices for the 
definition of "average cluster size" would change only numerical values, 
and not the essence of our results. From (B.27a), (B.27b) we know that in 
the scaling limit Xo vanishes proportional to - s ( t )  1/2, and similarly 
Yo o c - s ( t ) - l / 2 ~ O .  We also know, from (B.24), that x~ vanishes: 
x~(t) ocs(t) -1/2 as t y t  C and xf~(t) o c - s ( t )  1/2 as t{to.  Therefore, the 
prefactor [---] in (4.12) can be expanded about x~. In order to do this, we 
note that 

u'(Xo + yo) = u'(x'o) + (Xo + yo - x~) u " ( x ; )  + . . .  

u'(Xo) = u'(x~) + (Xo-  x~) u"(x{) + ... (4.16) 

u'(yo)  - -  u ' ( x ; )  + ( y 0  - xf~) u " ( x ; )  + . . .  

Insertion of (4.16) into (4.12) yields for H(x, y, t) 

t t  

H(x, y, t )= - (0) s . .  Of .  t) Of [u,(O)]2Xott)~x(X, --~y ( y , t ) +  ... ( t ~ t c )  (4.17) 

where we have used Eq. (B.16) for X~o(t). A scaling law for the generating 
function H(x, y, t) is obtained if we insert into (4.17) the result (B.24) for 
x;  and (B.22a), (B.22b) for #f/#x and #JyOy. One finds that, in the scaling 
limit (S), s(t) i/z H(x, y, t) approaches a scale-invariant form as follows: 

s(t) 1/2 H(x, y, t) s .  -T- [(2g)l/ZB]-I h(pl ) h(p2 ) (4.18a) 

where the parameter B is defined in (B.21b). The scaling variables p~ and 
P2 are related to x and y through 

Pl =- -xs( t ) ;  P 2 -  -ys ( t )  (4.18b) 

and h(p) is defined in (B.22b). The minus sign in (4.18a) applies in the 
pre-gel stage. The plus sign applies for t > t~.. 

A scaling law for em,(t) can readily be obtained by inversion of (4.17). 
With the use of the definition (4.11) of H(x, y, t) and (B.2) of f ( x ,  t) one 
finds that 

mnem,(t) s ~ ~ [(2~)1/2B] i s(t)-l/Z(mn)2 Cm(t ) c,(t) (4.19) 
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or, with the use of the scaling form (B.20) for ck(t), 

emn(t) S _T_[(2~)l/2B]_Xs(t) 7/2rlrzq)(rl)q)(r2) (4.20a) 

The scaling arguments r I and r 2 in (4.20a) are defined as 

rl - m/s(t);  r 2 ==- n/s(t)  (4.20b) 

The explicit form of ~o(r) is given in (B.21a), (B.21b). Finally, a scaling law 
for the covariances can be found from (2.21): 

(( ~m(t) ~n(t) >) 

s s ( t )_v /2 [6 ( r l_ r2 )  q~(rl) T ~(2rc)1/2B]_l r~r2~o(rl)q~(r2) ] (4.21) 

where the Kronecker delta in (2.21) has been replaced by s(t) -r- ~ ( r l -  r2). 
Equation (4.21) clearly shows that in the scaling limit the covariances 
((~m ~n )) approach a scaling form, independent of the details of the initial 
distribution c~(0). 

4.4. The Large-Time Limit ( t -~ ~)  

From Appendix B.4 we know that in the limit t-~ oo 

xo(x, t) ~ -oo ;  Yo(Y, t) ~ - o o  (t ~ oo) (4.22) 

As a consequence, one has u ' ( x o ) ~  c i (O)e x~ and hence, from (4.12), 

af t ) ~ ( y ,  t) ( t ~  oo) (4.23) /4(x, y, t)~ { l-c,(0)t- 13/e1(0)} (x, 

The large-time behavior of em,(t) follows from inversion of (4.23). The 
result is 

em,,(t)~ { [ c l ( 0 ) t -  1 ]/c1(0)} mnem( t )c , ( t )  (t--,  oo) (4.24) 

The large-time behavior of the concentrations c~(t) is given in (B.31). The 
covariances ((d,~(t)~,(t))) can be calculated from (2.21). 

4.5. Fluctuations in the Gel Mass 

We first consider the covariances ((~mT)) and then the variance 
((7(02)). An exact expression for the covariances can be obtained in terms 
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of the generating function H(x, y, t) in (4.11) as follows. We rewrite 
((~,~7)) in terms of e,,,(t): 

(( ~m(t) 7(t) )) = -- ~ n(( ~,.(t) ~.(t) )) 
n 

and we express ~ .  ne,~. as a contour integral in the complex plane: 

1 r" dWl H 
~ ne.,.(t)=2--~mi~ w-- (x, O, t) (4.25b) 

Combination of (4.25a), (4.25b) then gives the desired result. For t < tc, 
where there is no gel, the right-hand side of (4.25b) vanishes. To see this, 
we note that in the pre-gel stage x0(0, t )=  0, so that 

Of (x, t) = ~f (x, t) H ( x ' O ' t ) = ( t - t " ) M 2 ( t ) - ~ x  ---~x ( t<tc)  (4.26) 

We have used Eq. (B.11) for M2(t) if t <  t,,. The fact that ((r vanishes 
in the pre-gel stage then follows from combination of (4.25a), (4.25b), 
(4.26), and the definition (B.2) of f ( x ,  t). 

The asymptotic behavior of ((~mT)) for large cluster sizes (m--, oo) 
can be calculated along similar lines as the behavior (4.14) of emn(t). The 
main contribution to the integral in (4.25b) comes from the region where 
x ~- xs(t), or Xo(X, t) ~- x6(t), so that for large m, Eq. (4.25b) reduces to 

[ ~ + , X o ( 0 ,  t)) ]Mz(t)mc,~(t)  ( m ~ )  (4.27) nem,(t)~ t u (x~)u (Xo(0, t))J 
n 

Insertion of (4.27) into (4.25a) gives the desired large-m behavior of 
((  ~ m ]) ) ) '  namely 

((~m(t) ~,(t))) 

~ - - m C m ( t ) { l + t M 2 ( t ) [ l - U ' ( X ~ 1 7 6  (m--+ o r ) ( 4 . 2 8 )  
u'(xo(0, t)) JJ  

where we have used the definition (B.16) of x~(t). Note that the right-hand 
side of (4.28) vanishes if t < t,, 

The behavior of the covariances ( ( ~ m ~ ) )  in the scaling limit [m ~ ~ ,  
s ( t ) ~  ~ ,  with r 1 =m/s(t) fixed] can most easily be calculated from 
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Eq. (4.21) for t >  to. Multiplication of (4.21) with - n  and summation over 
all n gives 

((~.~7))  s -s( t )  3/2 fo ~ ' dr2 r2{6(rl -- r2) q)(rl) 

+ [(2~)~/2B] lrlr2q)(rl) q~(rz) } (4.29) 

Calculation of the integral in (4.29) with the use of the explicit form 
(B.21a), (B.21b) of the scaling function (p(r) gives 

(( ~m(t) ~;( t) )) s _2s(t)_ 3/2rl qg(rl) 

s , _2mCm(t) (t > to) (4.30) 

Equation (4.30) implies that, at the gelpoint to, the covariances ( ( ~ m ~ ) )  

jump from zero (for t < to) to a finite value (for t > to). This finite value is 
given by the right-hand side of (4.30) if m is sufficiently large. 

The large-time behavior of ((~mT)) can be determined from (4.25a) 
and (4.24). The first term on the right in (4.25a) is exponentially small 
compared to the second term. As a result one finds that 

((~m(t) 7(0))  ~ -mCm(t) (t ~ ~ )  (4.31) 

with Cm(t ) given in (B.31). 
Finally, the variance ((7(t)2)) can readily be expressed in terms of 

H(x, y, t) with the use of the definition (2.21) of em,(t ). The result is 

((7(t)2)) = ~ nm(e,m+6nmCm)=H(O, O, t )+M2(t )  (4.32a) 
n,m 

where H(0, 0, t) follows from (4.12) as 

H(0, 0, t )=  t [u (Xo(0, t))]2J [M2(t)]2 (4.32b) 

An approximate expression for ((72)) as t J, t~ can be obtained from (4.30) 
by multiplying w i t h  - m  and summing over all m :  

((7(02 )) ~ 2M2(t) 

~ 2 ( t -  tc) -1 (tj. tc) (4.33) 

Similarly, the behavior of ((7(02)) as t ~  can be determined from 
(4.30). The result is 

( (7( t )2) )~c~( t )~Q(O)e  ' ( t ~  ~ )  (4.34) 

822/49/5~6-3 
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Equation (4.34) clearly shows that the fluctuations in the gel mass are very 
small at large times, when the sol phase is virtually depleted. 

Before concluding this section, we discuss the calculation of the 
probability distribution Hr({ (r), t) and the correlation functions tgnm(t2, tl). 
In Section 4.1 we gave an exact expression for the covariances ((~,,~n)) in 
terms of the generating function h(x, y, t) or, equivalently, H(x, y, t). In 
principle, for a given initial state ck(0) (k = 1, 2,...), the generating functions 
can be inverted to yield an explicit expression for ((~m~n)). This deter- 
mines the matrix 2 in (2.16) and hence Hr({ ~), t) in (2.17). Similarly, the 
correlation functions tCnm(t2, tl) can be calculated from (3.35a), where 
Y,~(t2, tl) must be determined from (3.31b) in combination with (3.29b). 
Therefore, in principle, the calculations of Sections 3.2 and 3.3 may be 
repeated for general initial conditions. In practice, this task may not always 
be easy. 

5. I M P L I C A T I O N S  A N D  E X T E N S I O N S  

In this paper we have applied van Kampen's s to the 
master equation in the form (2.2), with rate constants Ku=tj .  From the 
lowest order in the expansion we find that the concentrations Ck(t) satisfy 
the macroscopic law (1.8) for all t ~> 0. From the next order in the ~?-expan- 
sion we find a linear Fokker-Planck equation for the marginal probability 
distribution Hr(~ (r), t) of the fluctuations {(r) = (~1 ..... ~ r )  in the numbers of 
clusters of size k ~< r. The solution of the Fokke~Planck  equation has the 
form of a multivariate Gaussian distribution with zero mean, ( { ( r ) ) =  0, 
and covariance matrix 2ran= ( (~ ,~n))  (m, r~< r). 

Concerning the status of the f2-expansion, the following is known. For 
large systems, i.e., in the limit M-~  o% the validity of the Gaussian 
approximation (2.17), and hence of the Fokker-Planck equation (2.13), 
has been proved by Kurtz (15) for a finite number of reactants and an 
arbitrary but finite time interval [0, T]. This result is applicable to the 
master equation in the form (2.2), since in this case the number of reactants 
is r + 1, which is finite. The r + 1 reactants are the k-mers (with k = 1 ..... r) 
and, as an (r + 1)th reactant, the mass Gr contained in clusters of size k > r. 
Hence we infer that the results of this paper are rigorously correct, at least 
for finite values of r and a given time interval [0, T], in the limit of a large 
system (M ~ ~ ) .  

Next, we discuss the behavior of  the fluctuations as a function of time. 
One of the remarkable results of this paper is that, for general initial con- 
ditions, the equal-time correlation functions or covariances ((~m(t)~,(t))) 
are analytical functions of the time for all t ~> 0 and all m, n = 1, 2 ..... In 
particular, this implies that the variances ((~m(t)2)) remain finite at the 
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gelpoint t~.. In fact, the only fluctuations that become large near t~. are the 
fluctuations in the gel mass. Equation (4.33) shows that the variance 
((y(t)2)) diverges as t~t~ proportional to the second moment M2(t)~ 
(t-tc)-L 

Yet, the fluctuations in the concentrations of finite-size clusters also 
become important in the vicinity of the gelpoint. To see this, we consider 
the moments M~a of the occupation numbers m~, which are defined as 

M~ =- ~ k~l~m~mt (5.1) 
k,l 

The average value of M ~  can be split in a macroscopic part, determined by 
the averages (ink),  and a part due to fluctuations as follows: 

(M~#) = ~ k~l~(mk ) (m,) + ~ k~l#~mkm,)) (5.2) 
k,l k,l 

The ratio R(t) of the second and the first terms on the right in (5.2) defines 
a measures for the influence of the fluctuations on the value of M~B. With 
the use of (1.11 ) one finds that, for large M, this ratio is equal to 

R(t) =_ E k~l~r /Z  k~l~(mk ) (mz) 
kJ / ,,j 

~ M -~ ~ k~lZ(<~k~,>>/M~(t) M~(t) (M-~ os) (5.3) 
k,l 

Therefore, at a finite distance from the gelpoint t~, the ratio R(t) is of the 
order of M -~, which is always small if M is large. 

However, for a fixed value of M the ratio R(t) becomes large if t 
approaches the gelpoint tc. This can be seen from the scaling function 
results (4.21) for ((~k~/)) and (B.20) for e~(t). One finds that as t-~ t C 

R(t) ~ C ~ [ t M  1 s( t )3 /2  (M>> 1, t-~ to) (5.4) 

where C~p is some constant and s(t) is the average cluster size, given in 
(B.23). In the derivation of (5.4) we have approximated the sums in (5.3) 
by integrals, which is allowed if ~ > 3/2 and / />  3/2. The fluctuations in 
M ~  become important as soon as R(t)_~ 1. From (5.4) it follows that this 
happens if s(t)~ M 2/3 or It~.- t[ ~ M -1/3. We conclude that a macroscopic 
(Smoluchowski-type) description of the moments M~f is justifiable only if 
the distance from the gelpoint is sufficiently large: M1/31tc-t I ~ 1. The 
physical explanation for this is that the main contribution to the higher 
moments comes from large clusters, with k > s(t), and the number of such 
clusters is of the order of unity if s(t)~_M 2/3. It follows that for 



912 van Dongen and Ernst 

l to -  t] < M -1/3 the fluctuations in the number of large clusters become very 
large, so that the O-expansion of the moments M ~  breaks down. 

Another limit where the fluctuations in the concentrations of sol 
clusters become important is the limit of large times. In this limit the 
absolute size of the fluctuations becomes small, as can be seen from Eqs. 
(4.21) and (B.31). However, the relative size of the fluctuations, i.e., the 
value of R(t) defined in (5.3), becomes very large if t ~ ~ .  It follows from 
(2.21), (4.24), (B.31), (B.12b), and (B.14b) that monomers are the 
dominant species in the sol, and that only terms with k = l =  1 contribute 
to R(t) in (5.3) in the long-time limit. Thus, one finds that R(t)~ 
[Mcl(t)]-l,,~et/Mcl(O). The size of the fluctuations becomes large if 
R(t)~-1, which happens if t~-tM=-log[Mcl(O)]. The importance of the 
fluctuations for t ~- t~t is quite obvious, since at this stage the sol contains 
only a single monomer: (mk)~--Mcl(t)~-1. The breakdown of the 
Gaussian approximation at t ~-tM is a nice illustration of the fact that 
Kurtz's proof of the validity of this method cannot be extended to time 
intervals [0, TM], where T M increases proportional to log M as M ~ ~ .  

At a technical level, one of the most curious facts of this paper is the 
drastic simplification occurring in Eq. (2.20) for the covariances ( ( ~  C t)), 
as a result of the introduction of ekt in (2.21). This suggests that ekt rather 
than ((~k~z)) is the quantity of physical interest. The interpretation of ekz is 
as follows. In the same way as ((~k~t)) is related to the covariances (or 
second cumulants) of the occupation numbers mk, i.e., 

((m~mt~ ~ M((~k~t~ ( M ~  ~ )  (5.5a) 

one finds that ekz is related to the second factorial cumulants [mkmt], 
which are defined as 

[mkml]  =-- ( ( m k m l )  ~ -- 6 k l ( m k )  

Mekl(t) (M ~ oo) (5.5b) 

The importance of the factorial cumulants [mkmt] is that the second (and 
higher) factorial cumulants vanish (Ref. 1, Section 1.2) if each number mk is 
taken from a Poisson distribution and all ink, mt are statistically indepen- 
dent. The relevance of this property is particularly clear in the exact 
solution (A.7) of the master equation for monodisperse initial conditions. 
Equation (A.7) shows that, apart from a factor A(~j jmj, M) representing 
the mass conservation law, the variables m~ are mutually independent, 
satisfying Poisson statistics with the average (mk)"~Mck(t) (k=  1, 2,...). 
Without the restriction ~i jmj=  M one would have ekz(t)=0 for all t ~>0. 
Conversely, we infer that the central role of e~t in this paper is a reflection 
of the conservation law for the total mass. 
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We consider the role of the factorial cumulants ekl in some more 
detail. In particular, we consider the sign o f  ek~ in the pre-gel and in the 
post-gel stage. From (3.2) we know that for monodisperse initial conditions 
the sign of e~ is negative in the pre-gel st:::ge and positive in the post-gel 
stage. This impliesthat, as a result of the ~nass conservation law, the fluc- 
tuations obey sub-Poisson and super-Pois:on statistics for t < 1 and t > 1, 
respectively. The interpretation of this f~ct for the off-diagonal elements 
egt(t) (with k ~ l) is given below (3.4). The interpretation for the diagonal 
elements eke(t) is as follows. Suppose that the number of k-mers at time tl 
exceeds the average, i.e., that ~k(t l)>0.  The return of the average fluc- 
tuation ( ~ ( t ) )  to its limiting value (~-k)--0 is described by Eq. (3.22). 
The second term on the right in (3.22) corresponds to pure Poisson 
statistics. The first term on the right reflects the mass conservation law, 
since it shows that k-mers and smaller polymers are not statistically 
independent. In the pre-gel stage this first term is negative, since an excess 
of k-mers implies that there are fewer j-mers, i.e., (~ j )  is negative. As a 
result, the probability distribution for ~ is narrower than the Poisson dis- 
tribution (sub-Poisson statistics). In the post-gel stage an excess of k-mers 
implies that, most likely, the sol phase as a whole is larger, so that the first 
term on the right in (3.22) is positive (super-Poisson statistics). These 
arguments are also true for general initial conditions. In this case the fact 
that ekt has a different sign in the pre-gel and in the post-gel stage is most 
clearly demonstrated by Eqs. (4.15) and (4.19). 

We conclude with some comments on the macroscopic law (1.8) for 
the coagulation model K~ = 0" obtained by applying the ~2-expansion to the 
master equation (1.2). Equation(l .8)  differs from Smoluchowski's 
equation (1.1) in the post-gel stage because the sol mass Z j c j  in the last 
term is replaced by unity. This difference shows up for t >  to, where 

jcj < 1, and corresponds to differences in the description of interactions 
between the sol and the gel. The post-gel coagulation model (1.8), referred 
to as the F-model in the terminology of Ziff et al., ~2~ includes sol-gel 
interactions, as discussed below Eq.(1.8). On the other hand, in 
Smoluchowski's equation (1.1), referred to in Ref. 12 as the S-model, 
interactions between the sol and the gel are absent. Here we comment on 
this alternative model for the post-gel stage, where sol-gel reactions are not 
taken into account. We start with the observation that the reduced reac- 
tivity of the "gel" in the S-model must be a property of all large clusters. 
The reason is simply that a gel (in the sense of infinite cluster) does not 
occur in a physical (finite) system, i.e., that in practice "gel" means "large 
cluster." Moreover, all physical mechanisms conceived to explain the 
reduced gel reactivity (9'16) apply for all large clusters. 

Therefore, suppose that the reactivity is reduced (say, zero) for all 
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clusters larger than size k 0. In this case application of the Q-expansion to 
the master equation (1.2) immediately gives the following macroscopic law 
for k ~< k 0 and all t >/0: 

k0 

Ck = 1 Z KijCiCj -- Ck Z KkjCj (k <<. ko) ( 5 . 6 )  
i+j=k j = l  

Equation (5.6) has been solved by Lushnikov and Piskunov (16) for various 
choices of the rate constants, including Ko= ij. The model (5.6) has been 
baptized "finite Smoluchoski kinetics" by Leyvraz, (I~) who solves the case 
Ko = const. Thus, we arrive at the following conclusion. From the point of 
view of the ~-expansion the S-model (1.1) is not the correct macroscopic 
law in the post-gel stage. One cannot study the fluctuations in the S-model. 
The S-model is merely an approximation of the finite Smoluchowski 
kinetics (5.6), and this approximation is better for larger values of ko. 

In this paper we have studied the fluctuations from a master equation 
describing irreversible coagulation. Next we comment on the possible 
generalization of this paper to reversible aggregation processes. A master 
equation describing both coagulation and fragmentation has been 
proposed by Hendriks. (Is) In order to describe breakup of clusters this 
author adds a term to the right-hand side of Eq. (1.2), of the form 

�89 ~ AFj [Fomi+j P(m, t)] (5.7a) 
i,j 

where F,y is a fragmentation rate and A]  is a difference operator: 

Auf(m)-- f({m~--f i ,k--6jk+6~+~,~})-- f(m ) (5.7b) 

The essential point in (5.7a), (5.7b) is that the breakup rates F U depend 
only on the cluster sizes i and j. 

Unfortunately, for the model considered in this paper, a description of 
the combined coagulation-fragmentation process merely in terms of cluster 
sizes, as in (5.7a), (5.7b), is impossible. The reason for this has been dis- 
cussed in Ref. 19: the fragmentation rate for the breakup of k-mers into 
i- and j-mers (with i + j =  k) depends not only on the cluster sizes, but also 
on the specific configurations/4 v, p of the i-, j-, and k-mers. Therefore, one 
should specify the configurations separately, and construct a master 
equation in terms of the occupation numbers mko and the fragmentation 
rates Ff,~. The average fragmentation rate F,y is then given by 

,u,v,p p 
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Equation (5.8) shows that in our model the fragmentation rate F o. is a 
stochastic variable. Moreover, in a large system (M--+ c~), the fluctuations 
in F,j are of the same order as the fluctuations in mkp, i.e., of relative order 
M -~/2. This shows that in our model F o. can never be treated as a fragmen- 
tation constant. Tiffs conclusion, that Fg cannot be treated as a constant, 
can be generalized to all models for the formation of branched polymers. In 
fact, the only physical model for which a description of the form (5.7) can 
be used is the constant kernel, K u = F g =  1, which corresponds to the 
formation of linear chains. ~7) 

Next we comment on the work of Donoghue, i2~ who has studied 
the equilibrium solution of the combined coagulation-fragmentation process 
for the classical polymerization models RA/. of Flory and Stockmayer. The 
relevance of Donoghue's results for the present work is that, in the limit 
f--+ m, the coagulation rates Kij in the model RAr reduce to our model 
(1.7). The essential difference of course is that in our model fragmentation 
does not occur. For  convenience we take the limit f--+ oo in Donoghue's 
results. 

Donoghue ~2~ finds that, in the pre-gel stage, the equilibrium concen- 
trations c~_=limv+ o~ ( m k ) / M  have the same form as the time-dependent 
solution of the kinetic equation (1.8) for monodisperse initial conditions, 
which is given in Eq. (1.9). However, in the post-gel stage he finds that c k 
has the form 

c~=Ak  ~ 2/(k!e~)~A(2~z)172k-5/2 (k--+c~) (5.9) 

where A is equal to the sol fraction, i.e., A = Z~:_ 1 kck < 1. The result (5.9) 
differs from the form (1.9), since Eq. (1.9) predicts that ck falls off exponen- 
tially as a function of k, rather than algebraically, if t > 1. 

The discrepancy between the kinetic and the equilibrium theory has 
caused some confusion. First, in Ref. 20 it is suggested that the kinetic 
interpretation of the S-model {22) that the gel is inactive may not be correct. 
Furthermore, Donoghue ~2~) constructs an alternative "kinetic" equation, in 
agreement with the equilibrium solutions. For K u = i /  this alternative 
equation is different from Eq. (1.8) and also different from the S-model. 
The present paper shows that the correct kinetic equation for the model 
K0= 0' is Eq. (1.8). Furthermore, the discussion around Eq. (5.6) shows 
that the kinetic interpretation of the S-model given by Ziff and Stell {=) is 
basically correct. There is, however, no dynamic or kinetic basis for 
Donoghue's construction of a "kinetic" equation. His alternative does not 
seem to have any relevance for a description of the size distribution in 
time-dependent coagulation phenomena. Donoghue's implicit assumption 
that the kinetic and the equilibrium solutions must have the same form as a 
function of k is not justified in the post-gel stage. 
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We comment on the possible extension of the methods used in this 
paper to other models. For general reaction rates K o one cannot, as a rule, 
construct a closed master equation for the marginal probability density 
Pr(m (r), t) as was done in (2.2). For  this reason we applied the O-expansion 
to the master equation (1.2) and found two other (nongelling) models 
where the fluctuations can be studied in detail for general initial conditions. 
These models are K• = i + j and Kij = 1. Furthermore, we obtained some 
qualitative results for general homogeneous kernels. These results will be 
published in a subsequent paper. 

Before concluding this paper, we summarize the main results. The 
coagulation model presented here is one of the few nontrivial 5 nonlinear 
kinetic equations for which the fluctuations can be calculated exactly. 
Explicit results were obtained for monodisperse initial conditions, 
c~(0) = 6~1. In this case one finds a relatively simple form for •(t), namely 
~mn=(~mnCn - (1- t)mnCmCn, and, as a result, Hr(~ ~r~, t) can be calculated 
explicitly. Furthermore we calculated the two-time correlation functions 
((~m(tl) ~,,(t2))), with tl ~<t2, for all n, m =  1, 2 ..... For  general initial con- 
ditions we found an exact expression for the covariances ((~m~,)) and 
((~m7)) in terms of their generating function. From the generating function 
we calculated the asymptotic behavior of ((~m ~,,)) and ((~m~)) in the limit 
of large cluster sizes (n, m ~ oo), in the scaling limit, and in the limit of 
large times (t ~ oo). In these limits the form of the covariances is relatively 
simple, and does not depend on the details of the initial distribution. An 
important implication of these results is that the macroscopic 
(Smoluchowski-type) description breaks down in the vicinity of the 
gelpoint, namely if I t c - t l ~ - M  -~/3, and also at large times, for t >  
log[MCl(0)].  Another interesting observation is that the relation (4.33) 
between the fluctuations in the gel fraction (order parameter) and the 
second moment of the size distribution, which is a well-known result in the 
theory of continuous phase transitions, (24) has been extended here to a 
nonequilibrium phase transition. 

A P P E N D I X  A 

In this appendix we summarize and extend the results of Lushnikov (6) 
concerning the exact solution of the master equation (1.2) for K U = t)" and a 
monodisperse initial state. We give explicit expressions for the average 
number of clusters ( m k )  and the covariances ((mimj)).  We also discuss 
the limit of a large system, i.e., M ~ 0o. The body of the paper deals with 
approximate or asymptotic solutions for M ~ oo. 

5 Another, somewhat trivial, example is McKean's model-Boltzmann equation, which is 
discussed by van KampenJ TM 
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First we discuss Lushnikov's exact solution for monodisperse initial 
conditions. The exact solution is not formulated in terms of the probability 
distribution P(m, t) itself. Instead, Lushnikov derives an expression for the 
generating function P(x, t) of P(m, t) that is defined as 

/3(x, t) - ~ P(m, t) exp(m �9 x) (A.1) 
m 

Note that the summand in (A.1) vanishes unless ~ km~ = M. This is a con- 
sequence of the mass conservation law (1.4). Lushnikov has shown that 
/;(x, t) is exactly given by the following contour integral in the complex 
plane: 

/3(x, t) = dz z -  M 1 exp a~(t)z ~ exp(xk) (A.2) 
k 1 

where ak(t) satisfies a set of differential equations 

M(~h.=�89 ~ ijazai+�89 kah. (k=l,...,M) (A.3) 
i + . j = k  

that is to be solved with the initial condition ak(0)=6,1.  The path of 
integration in (A.2) is a closed contour circling the origin in the complex z 
plane once in the counterclockwise direction. In other words, apart from a 
factor M!, /~(x, t) is the coefficient of z M in the Taylor expansion of the 
integrand in (A.2). 

Equation (A.3) can be solved in terms of the generating function 

M 

G(z, t ) -  ~ ak(t)z k (A.4) 
k = l  

An explicit expression for G(z, t), or rather for exp[G(z, t)], can be 
obtained from (A.3) in the form of a power series in z. The result is (6) 

exp[G(z, t)] = 1 +u(z ,  t ) + O ( z  M+I) (A.5) 

where u(z, t) is a polynomial of order M: 

,44 

u(z, t) =- ~ q,( t)  z" (A.6a) 
n = l  

and q,,(t) is defined as 

q,,( t ) = (l/n!) exp[- - �89 - n/ M)  ] (A.6b) 
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Note that the precise structure of the term of order z M+l in (A.5) is 
irrelevant, since the coefficients ak(t) in G(z, t) are completely determined 
by the coefficients q,(t) in u(z, t), and vice versa. 

Lushnikov's results (A.1)-(A.6) in terms of generating functions can be 
used to construct explicit expressions for the probability distribution 
P(m, t) as follows. The structure of the solution can be determined ~7/ by 
expanding the integrand in (A.2) in powers of z and selecting the coefficient 
of z M exp(m, x). The result is 

P(m, t )=M! F[ {[ak(t)]m~/mk !} A jmj, M (A.7) 
k =  I j 

where zI(i,j) is a Kronecker delta, i.e., A(i , j )= 1 if i = j  and A(i,j)=O 
otherwise. An explicit expression for ak(t ), and hence for P(m, t), can be 
obtained from (A.5) by taking the logarithm on both sides and using the 
expansion formula for log(1 + u) with lul < 1. One finds that 

G(z, t )=log[1 +u(z, t)] + O(z M+I) 
M 

= ~ [ ( - 1 )  j l~i]u(z,t)/+O(zm+l) (z~O) (A.8) 

Insertion into (A.8) of the explicit form (A.6a) of u(z, t) and comparison of 
the coefficients of z k on both sides of (A.8) yields the following expression 
for ak(t): 

k 

ak(t)= ~ [ ( - 1 )  j 1#] ~ q,~(t)...q,j(t) (ni~>l) (A.9) 
] =  1 t / l +  ---  + n j = k  

Thus, for all k ~ M, a~(t) is a finite sum of products of factors q~(t) (n <<. k). 
Lushnikov's results can also be used to calculate the moments of the 

probability distribution P(m, t). The zeroth and first moments were given 
in Ref. 6. The zeroth moment of P(m, t) can be calculated from (A.1)-(A.6). 
The result shows that the probability distribution is properly normalized: 

M!~ dz 
~ P ( m , t ) = P ( O , t ) = ~  i ~ e x p [ G ( z , t ) ] = l  (A.10) 
m 

The first moment of P(m, t) is obtained from (A.1) by differentiation with 
respect to xk. The result is 

6/3 M! ( .  

<mk(t)>----C?Xk(0, t )=ak ( t )~ i~dzz - -M+~  lexp[G(z,t)] 

=ak(t) M!qM ~(t) (A.11) 
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We proceed and calculate the second moments (mirnj), which can be 
obtained from the second derivative of/;(x, t): 

(mimj) Ox~ c~xj (0, t) 

= 6~(rn~) + M! a~(t) aj(t) qM ,_j(t) (1.12) 

In (1.12) we have used the explicit form (1.11) of (mi(t)). The covarian- 
ces ((mimj)) = (m~rnj) - (mi) (rn j )  follow from (A.12) and (A.11) as 

( (m~m/ ) )=6u(m~)+(ms) (m/ ) [qM-~- j (M!qM iqM j ) - - l ]  (1.13) 

Higher moments can be calculated straightforwardly. 
Finally, we calculate approximate expressions for (m~) and ((mimj)), 

valid if the system is large ( M ~  oo). First we determine the asymptotic 
behavior of ak(t) as M-~ oo with the use of (A.3). To do this, we transform 
from ak(t) to a new function Ak(t), defined as 

At(t) - M ~ lak(t) e x p [ -  �89 - k / M ) ]  

= M k -  l(M-- k)! a k ( t  ) qM k( l )  (A.14) 

and we find the following equation for Ak(t): 

ftk=�89 ~ i j A i A j e x p ( i j t / M ) - ( 1 - k / M ) k A  ~ (A.15a) 
i + j = k  

A~(0) = 6~1 (A.15b) 

For large M, Eq. (A.15a) reduces to 

ft~=�89 ~ i j A i A j - k A k + O ( M  -1) ( M ~ o o )  (A.16) 
i + j = k  

To leading order, Eq. (A.16), with the initial condition (A.15b), is identical 
with Smoluchowski's equation (1.8) for monodisperse initial conditions. 
Thus, :[or large M, Ak(t) reduces to the concentrations ck(t ) in (1.9), i.e., 

A~(t )=ck( t )+O(M -1) (M-+oo) (A.17) 

Combination of (A.11), (A.14), and (A.17) shows that, for large M, the 
average number of k-mers per unit volume is equal to the solution c~(t) of 
the macroscopic law (1.8), which is given in Eq. (1.9): 

M - ' ( m k ( t ) ) = e k ( t ) + O ( M  -~) ( M ~ o o )  (A.18) 
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Similarly, we find an asymptotic expression for the covariances (A.13) if we 
use Eq. (A.18) and the explicit form (A.6b) of q,,(t). The result is 

M l((mi(t) mj(t))) 

=c~( t ) [6o . - (1 - - t ) i j c j ( t ) ]+O(M -~ ) (M--* oo) (A.19) 

Equation (A.19) implies that the size of the fluctuations around 
the macroscopic solution is of relative order M -1/2, i.e., that 
({ (mk)2)) l/2/ (m~ ) = O(M -1/2) as M ~  oo. 

A P P E N D I X  B 

In this appendix we review the properties for general initial conditions 
of the solution ck(t) of the macroscopic law (1.8), i.e., 

Oh=�89 ~ i jc ic j -kc  ~ (k=l ,2 , . . . )  (B.1) 
i + j = k  

Most of the results listed in this section have been obtained by Ziff et al. O2) 
For the details we refer to their work. Here we give only a summary. We 
discuss first the solution of Eq. (B.1) in terms of generating functions and 
then, in this order, the behavior of ck(t) at large cluster sizes (k--, oo), in 
the scaling limit, and in the limit t ~ oo. Finally, we discuss the special case 
of monodisperse initial conditions. 

B.1. So lu t ion  for  General  Init ial  Condi t ions  

Equation (B.1) can be solved with the use of the generating function 
f ( x ,  t) of kck(t), which is defined as 

f ( x ,  t) =- ~. kc~(t) e ke 
k = 1 (B.2) 

u(x) =- ~ kck(O) e ~x = f ( x ,  O) 
k ~ l  

The initial distribution ck(0) is represented by the generating function u(x). 
Insertion of (B.2) into (B.1) gives a partial differential equation for f ( x ,  t): 

Of t- (1 - f )  Of at ~xx = 0; f ( x ,  O) = u(x) (B.3) 

The solution f ( x ,  t) of (B.3) satisfies the following implicit relation in terms 
of u(x): 

f ( x ,  t) = U(Xo) (B.4a) 
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where Xo(X, t) is defined as 

Xo(X, t) -- x + t f (x ,  t) - t (B.4b) 

Similarly, if f (x ,  t~)_= w(x), then f (x ,  t) can be written as 

f ( x ,  t ) =  w ( x l ) =  f ( x~ ,  t~) (B.5a) 

with 

X 1 =X'~- (t-- t l )[f(x,  t ) -  I] (B.5b) 

In principle, the concentrations ck(t ) can be calculated from f (x ,  t) by 
inversion of (B.2). 

We consider the various moments of ck(t). The nth moment M,(t) is 
defined as 

~n-  I f  
M , ( t ) -  ~ k " c k ( t ) = ~ ( O , t )  (n=l ,2 , . . . )  (B.6) 

k=l  

The first moment gives the fraction of the total mass contained in finite 
size clusters (sol particles). The gel is identified with an infinite cluster. 
Conservation of total mass implies that the first moment Ml(t)  and the gel 
fraction g(t) are related as 

M l ( t  ) -t- g ( t )  = 1 (B.7a) 

An implicit relation for Ml(t), or, equivalently, g(t), is obtained from (B.4) 
by setting x = 0. The result is 

Ml(t)=u(t (M,( t  ) - I)); g ( t )=  1 - u ( - t g ( t ) )  (B.7b) 

Equation (B.7b) for M~(t), or g(t), has two solutions. The first solution, 
g(t) = 0, is valid in the pre-gel stage, i.e., before the gelpoint tc. The second 
solution, satisfying g(t) > 0, is the relevant root in the post-gel stage, i.e., if 
t >  to. The behavior of the second root for t,Ltc can be calculated by 
expanding (B.7b) about g =  0. The result is 

g(t)~2[u'(O)]2[tu'(O)-l]/u"(O)=2(t-t,.)/t3u"(O) (t,~ t,) (B.Sa) 

The gelpoint to= [u'(0)] -1 has been determined from the condition 
g(t,) = 0. For large times one finds 

1-g(t) . .~u(-t) . .~cl(O)e -t ( t~oo)  (B.8b) 

implying that, eventually, all mass is contained in the gel. 
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Next we consider the higher moments. The second moment  M2(t)  can 
be calculated from (B.6) for n = 2, with f ( x ,  t) given by (B.4). Differen- 
tiation of (B.4a) with respect to x gives 

0f t )= u'(Xo) 
~x (x, 1 - tu'(Xo) (B.9) 

implying for Mz(t), because of (B.6), 

M2(t)  = u'( - tg( t ) ) /[  1 - tu'( - tg(t))]  (B. 10) 

In the pre-gel stage, where g ( t ) =  0, Eq. (B.10) reduces to 

M 2 ( t ) = ( t , , - t )  - '  ( t <  to) (B.11) 

Equation (B.11) shows that M2(t  ) diverges at t,.. In the post-gel stage, one 
finds from (B.10), (B.Sa), and (B.8b) that 

M2(t)  ~ (t - t,.) ' (t $ tc) (B.12a) 

~ u ' ( - t ) ~ C l ( O ) e  ' ( t ~ o o )  (B.12b) 

Similarly, results for the third moment  M3(t ) are obtained from (B.6) with 
n = 3. In the pre-gel stage one finds that 

M3(t) = M3(0)(1 - t/t , .)-3 (B.13) 

and in the post-gel stage 

M 3 ( t ) ~ M 3 ( O ) ( t / t c - 1 )  -3 ( t~ tc )  (B,14a) 

Cl(0) e ' (t ~ oo) (B.14b) 

Still higher moments, i.e., M , ( t )  with n > 3, can be calculated analogously. 

B.2. Results at Large Cluster  Sizes ( k ~  ~) 

The large-k behavior of ck(t) at a fixed time t can be calculated as 
follows. The first step is to write ck(t) as a contour integral in the complex 
plane: 

1 f dw a f ,  - e  ~ (B.15) k~ck(t) = ~ ~ ~ ~ ~x, t); w 

Equation (B.15) expresses the fact that k2ck(t) is the coefficient of w k = e ~x 
in the generating function (Of/•x)(x, t). The integration path in (B.15) 
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circles the origin in the complex w plane once, and counterclockwise. The 
second step is to approximate the integral in (B.15) for large k with the use 
of the saddlepoint method. It is readily seen from (B.9) that the function 
x(f, t) has a saddle point at f , =  u(X'o), where x; is implicitly defined 
through 

u'(x'o) = t ~ (B.16) 

The corresponding values of x(f, t) and w(f, t) at the saddle point are 

x , ( t ) = x ~ - t f s + t ;  w , ( t ) = e  ~') (B.17) 

Accordingly, a convenient choice for the contour in (B.15) is the circle 
w = w , ( t )=  e ~, with - ~  < (p ~< ~. With this choice the integral in (B.15) has 
been calculated by Scott (14) and Ziff et al. Ilz~ The outcome is 

c k ( t ) ~ k  5/2127rt3u"(x~)] l/2w~(t) k ( k ~ w )  (B.18) 

This result is valid in both the pre- and post-gel stages. In the vicinity of 
the gelpoint we have 

x ; ( t ) ~  [ t2u" (O)] - ' ( t~ . - t )  ( t ~ t ~ )  (B.19) 

The result (B.18) represents the so-called universal form of the cluster size 
distribution, 125'26) which is the correct form if there exists a root x6(t ) of 
Eq. (B.16). There exists the possibility for nonuniversal solutions for certain 
classes of initial conditions(25'26); this will not be discussed here. 

B.3. The Scal ing Limit  

Next we consider the cluster size distribution in the scaling limit, 
which is the limit where the average cluster size diverges: s ( t ) ~  o0 and 
k--,ov, with the ratio r=-k/s(t)  fixed. In the scaling limit (S), c~(t) 
approaches a scaling form ~11) 

ck(t) s s(t) ~/2 ~o(r) (~.20) 

The scaling function q~(r) is given by 

qo(r) = B r -  5/2 e- ~r (B.21 a) 

where the constants B and 6 are determined by the initial conditions and 
by the precise definition of the average cluster size. If we choose s(t)=- 
M3(t)/M2(t) ,  which is the choice of Ref. 12, we find that 

B =  3 ,, =�89 [2rctcu (0)] 1/2; c5 (B.21b) 

Different choices for s(t) lead to different numerical values in (B.21b). 
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A different but equivalent formulation of the scaling law (B.20) is 
obtained if we consider the generating function (#f/#x)(x, t) instead of 
ck(t). One finds that (#f/#x)(x, t) approaches a scale-invariant form in the 
limit x ---, 0 and s(t) ~ oo with the scaling argument p = - x s ( t )  kept fixed: 

df  (x, t) s h(p); p - - x s ( t )  (B.22a) s( t ) - l/~ Tx 

where the scaling function h(p) has the form 

h(p) = B,,/-~(6 + p) 1/2 (B.ZZb) 

The constants B and 6 are the same as in (B.21b). 
We discuss the behavior in the scaling limit of x{(t) and Xo(X, t). These 

results are needed in Section 5.3. First we consider the solution xSo(t) of 
Eq. (B.16). The time dependence of s(t) is given, due to (B.11)-(B.14), by 

s(t) = Ms( t ) /M: ( t  ) ~ t~u"(O)(tc- t) -2 (t ~ tc) (B.23) 

so that x 6 in (B.19) can be expressed as a function of s(t) as follows: 

x ~ ( t ) ~  [u'(O)/u"(O)]l/2s(t)-l/2 (t'rtc) 
(B.24) 

x~(t) ~ - [u'(O)/u"(o)] 1/~ s (O- ' /2  (t J, t,) 

the function Xo(X, t) defined in (B.4b). From (B.22a) a Next we consider 
infer that 

f ( x ,  t) s M l ( t ) _  2~l/28E(~ + p) , /2_~l /2]  s(t)_l/2 

where M~(t) can be expressed in terms of s(t) due to (B.8a): 

M l ( t ) =  1 (t < t,.) 

M l ( t ) ~ l - 2 [ t ~ u " ( O ) s ( t ) ]  1/2 (t+tc) 

(B.25) 

(B.26a) 

(B.26b) 

Combination of (B.4b), (B.25), (B.26a), and (B.26b) finally shows that 
Xo(X, t) vanishes in the scaling limit, proportional to s(t)-l/2: 

Xo(X, t) s ~ - C + ( p ) s ( t )  -~/2 (B.27a) 

where the prefactor C(p) in (B.27a) is different below and above the 
gelpoint: 

C (p) = 27tl/2Btc[(6 + p)1/2_ •1/2] (t T t,.) 
(B.27b) 

C + ( p ) = C _ ( p ) + Z [ t ~ u " ( O ) ]  -~/2 (t~,tc) 
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In summary: both x~ and Xo(X, t) vanish proportional to s(t)-l/2, but the 
behavior of xo(x, t) is nonuniform in p = -xs( t ) .  

B.4. The Large-Time Limit ( t ~  ao) 

In the large-time limit we know from (B.4) that for a fixed value of x 

Xo(X, t ) ~  - t  ~ - c o  (t--* oo) (B.28) 

so that f ( x ,  t) in (B.4a) is determined mainly by the first few terms in the 
series expansion of u(x): 

f ( x ,  t)=cl(O)eX~176 ... ( t ~  oo) (B.29) 

Inversion of (B.29) and use of (B.4b) gives an expression for x(f,  t) as 
t - - *  oO: 

w = e  ~= [f/Cl(O)] e-~r+'{1 - [2c2(0)/c~(0)2]f + ...} (t-* oo) (B.30) 

Substitution of (B.30) into (B.15) and calculation of the integral gives 

( k t )  k l 
ck(t)= [c~(0)] k kk! 

x e  ~{ l+(k-1)[2c2(O) /c1(O)2] t  1+ ...} ( t ~ o o )  (B.31) 

At large times the dominant species, at least in the sol, are the monomers. 
Larger polymers become rare. 

B.5. Monodisperse Initial Conditions 

In particular, we need the results for an initially monodisperse system, 
i.e., ck(0)= 6~1. In this case u(x)= e x, so that the function x(f,  t) in (B.4) 
can be calculated explicitly 

eX=fe  r  (B.32) 

This result can be used in combination with (B.15) to give an explicit 
expression for ck(t), namely 

ck(t) = (k~-2/k[) t k le k t  (B.33) 

In this special case the phase transition occurs at t C = 1. The asymptotic 
results (B.18), (B.20), and (B.31) can readily be verified for ck(t) in (B.33). 

822/49/5-6-4 
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